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A Final–Final Evolution Equations

A.1 Notation and Kinematic Relations
We denote the pre- and post-branching partons by IK → ijk, respectively. For massless partons,
note the relations (and notation):

E2
cm ≡ m2

Ant ≡ sIK ≡ sijk = sij + sjk + sij (A.1)

and
xj =

2Ej√
sIK

= 1− sik
sIK

. (A.2)

For massive partons, we generally use the notation m for invariant masses and s for dot
products, hence e.g., m2

IK = (pI + pK)2 = m2
I + m2

K + 2pI · pK ≡ m2
I + m2

K + sIK , so that
sIK ≡ 2pI · pK . The relation for massive particles is thus:

m2
Ant = m2

IK = m2
ijk = sIK +m2

I +m2
K = sij + sjk + sik +m2

i +m2
j +m2

k . (A.3)

We define the scaled (dimensionless) invariants by

yij ≡
sij
sIK

=
m2
ij −m2

i −m2
j

m2
IK −m2

I −m2
K

. (A.4)

We also use the notation µ2
i = m2

i /sIK for scaled masses.
For massless partons as well as for the emission of a massless parton (like a photon or gluon)

from arbitrary emitters I and K (with mi = mI and mk = mK), the momentum conservation
relation yields:

yij + yjk + yjk = 1 . (A.5)

For the breakup of a massless gluon (or photon), I , to a massive quark-antiquark pair, i and j
(with mi = mj = mQ and arbitrary recoiler mass mk = mK), the relation is:

yij + yjk + yik + 2µ2
Q = 1 . (A.6)

For the emission of a massive particle, j, which does not change the flavour of the emitting
parent (like emission of a Z or Higgs boson), we have for general mj , mi = mI , and mk = mK :

yij + yjk + yik + µ2
j = 1 (A.7)

Finally, for the emission of a massive particle, j, which does change the flavour of the emit-
ting parent, we have for general mj , mi 6= mI , and mk = mK :

yij + yjk + yik + µ2
j + µ2

i − µ2
I = 1 (A.8)
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A.2 Phase-Space Factorisation and Källén Factor
The FF antenna phase space, for general masses, is

dΦijk
3

dΦIK
2

=
1

16π2

1√
λ(m2

IK ,m
2
I ,m

2
K)

dsijdsjk
dφ

2π
(A.9)

=
1

16π2

s2
IK√

λ(m2
IK ,m

2
I ,m

2
K)

dyijdyjk
dφ

2π
(A.10)

mI→0 || mK→0
=

1

16π2
sIK dyijdyjk

dφ

2π
, (A.11)

with the Källén function λ(a, b, c) = a2 + b2 + c2 − 2(ab + bc + ac) expressing the volume of
the 2-particle phase space of the parent antenna.

Note that
√
λ → sIK if either one or both of mI,K → 0. This is one reason we choose to

normalise our dimensionful scales by sIK rather than by m2
IK . (Also, we regard it as convenient

that in the limit that both of the two partons are heavy and at rest, the true size of phase space
vanishes, but sIK still goes to a finite number. sIK thereby represents a nice intermediate choice
between m2

IK and
√
λ.)

To account for the size of the 2-particle phase space for general FF antennae, we define the
following “Källén factor” for each such antenna,

fKällén ≡
sIK√

λ(m2
IK ,m

2
I ,m

2
K)

(A.12)

which is equal to unity except in the special case that both parents have non-zero masses (in
which case it is bounded from below by unity and is used as an overall constant factor multiplying
the trial antenna probability density).

The phase-space factorisation is then:

dΦijk
3

dΦIK
2

=
1

16π2
fKällén

dsijdsjk
sIK

dφ

2π
(A.13)

=
1

16π2
sIK fKällén dyijdyjk

dφ

2π
, (A.14)

For a generic FF antenna function written as Cg2ā/sIK , with g2 = 4πα a generic coupling
factor, C a generic charge factor1, and ā a function of the scaled (dimensionless) invariants and
masses, we thus have the generic integrand

C g2 ā

sIK

dΦijk
3

dΦIK
2

= fKällén

C α
4π

ā(yij, yjk, µ
2
i , µ

2
j , µ

2
k) dyijdyjk

dφ

2π
. (A.15)

1Note that we use a normalisation in which C = 1 for photon emission off leptons, C = 2/3 for photon emission
off up quarks, C = 2CF for gluon emission off quarks, C = CA for gluon emission off gluons, and C = 1 gluon
splittings to quark-antiquark pairs.
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A.3 Gluon Emission
A.3.1 pT Ordering

We define p⊥ as

p2
⊥ =

(m2
ij −m2

I)(m
2
jk −m2

K)

m2
IK −m2

I −m2
K

=
sijsjk
sIK

, (A.16)

where the first expression is our general definition of p⊥ and the second is valid for gluon emis-
sions. The corresponding dimensionless invariant is:

x⊥ =
p2
⊥

sIK
= yijyjk , (A.17)

The upper limit for this variable on the physical branching phase space is:

p2
⊥max ≤

sIK
4

; x⊥max ≤
1

4
, (A.18)

with the maximum value reached for the point (yij, yjk) = (1
2
, 1

2
).

We define the complementary phase-space variable as the rapidity of the emitted gluon

y =
1

2
ln

(
yjk
yij

)
, (A.19)

with the inverse transformations:

yij = e−y
√
x⊥ , yjk = ey

√
x⊥ (A.20)

Contours of constant x⊥ and y values are shown in fig. 1 on linear (left) and logarithmic
(right) scales, with the radiation pattern of a qq̄ → qgq̄ antenna superimposed in shades from
blue (low probability) to yellow (high probability).

Trial Function: We use the universal soft-eikonal term of the antenna functions to generate
trial emissions. This overestimates the physical antenna functions, which can therefore be recov-
ered by a simple veto procedure. (The only exception is when matrix-element corrections are
used, in which case larger trial overestimates may be needed, up to the matrix-element-corrected
orders.) The trial emission (eikonal) antenna function is

āE =
2

yijyjk
=

2

x⊥
. (A.21)

Trial Integrals: The trial integral is, symbolically,

AE = fKällén

C
2π

∫ Q2
1

Q2
2

α
dyijdyjk
yijyjk

. (A.22)
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Figure 1: Left: equidistant contours of constant x⊥ and y (with 0.05 between x⊥ contours and
0.25 between y ones) functions of yij and yjk. Right: equidistant contours of constant ln(x⊥) and
y (with 0.5 between ln(x⊥) contours and 0.25 between y ones), as functions of ln yij and ln yjk.
Note that the latter, rotated counterclockwise by 45 degrees, is also called the Lund plane.

The Jacobian for transforming to (x⊥, y) is unity:

dyijdyjk = dx⊥dy , (A.23)

so that the trial integral becomes

AE = fKällén

C
2π

∫ x⊥1

x⊥2

α
dx⊥
x⊥

∫ y+(x⊥)

y−(x⊥)

dy (A.24)

The exact rapidity integral is given by the physical rapidity range

yphys
± = ±1

2
ln

(
1 +
√

1− 4x⊥
1−√1− 4x⊥

)
, (A.25)

but since this would yield too cumbersome expressions to work with in practice, we shall use
simple overestimates of this range and recover the physical one by vetos.

For a constant trial α, we overestimates the rapidity range by the Lund triangle limits:

yLund
± = ±1

2
ln(sIK/p

2
⊥) = ±1

2
ln(1/x⊥) =⇒ ∆yLund(x⊥) = ln(1/x⊥) . (A.26)

Inserting this overestimate, the trial integral becomes

AE = −fKällén

C
2π

∫ x⊥1

x⊥2

α
dx⊥
x⊥

ln(x⊥) (A.27)

= αfKällén

C
4π

(
ln2(x⊥2)− ln2(x⊥1)

)
. (A.28)
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Solving the equation R = exp(−AE) for x2 yields:

Constant trial αs : ln2 x⊥2 = ln2 x⊥1 −
4π

αfKällénC
lnR . (A.29)

With an x⊥ generated according to this expression, a trial rapidity uniformly distributed on the
interval defined by the Lund triangle is generated, and vetoed if it falls outside the physical
rapidity range for the given x⊥ value.

For an explicitly first-order running αs, we overestimate the physical rapidity range at x⊥ by
the larger range accessible at some fixed x⊥min corresponding to the lowest x⊥ scale accessible
in the current “evolution window”,

y±(x⊥min) = ±1

2
ln

(
1 +
√

1− 4x⊥min

1−√1− 4x⊥min

)
=⇒ ∆y(x⊥min) = ln

(
1 +
√

1− 4x⊥min

1−√1− 4x⊥min

)
.

(A.30)
Defining

1/αs = b0 ln
(
kRp

2
⊥/Λ

2
)

(A.31)

= b0 ln
(
kRx⊥sIK/Λ

2
)

(A.32)

= b0 ln (x⊥/xΛ) , (A.33)

with xΛ = Λ2/(kRsIK), the trial integral becomes:

AE = fKällén

C
2πb0

∆y(x⊥min)

∫ x⊥1

x⊥2

dx⊥
x⊥

1

ln(x⊥/xΛ)
(A.34)

= fKällén

C
2πb0

∆y(x⊥min)

∫ lnx⊥1/xΛ

lnx⊥2/xΛ

d ln(x⊥/xΛ)

ln(x⊥/x⊥0)
(A.35)

= fKällén

C
2πb0

∆y(x⊥min)

∫ ln lnx⊥1/xΛ

ln lnx⊥2/xΛ

d ln ln(x⊥/xΛ) (A.36)

= fKällén

C
2πb0

∆y(x⊥min)

[
ln ln

(
x⊥1

xΛ

)
− ln ln

(
x⊥2

xΛ

)]
. (A.37)

Trial Generation: Solving R = exp(−AE) for p2
⊥2 (with R a uniformly distributed random

number on the interval [0, 1]), we obtain:

Running trial αs : p2
⊥2 =

Λ2

kR

(
p2
⊥1

(Λ2/kR)

)R(b0/IE)

, (A.38)

with

IE =
fKällénC∆y(x⊥min)

2π
(A.39)

With an x⊥ generated according to this expression, a trial rapidity uniformly distributed on the
interval defined by x⊥min is generated, and vetoed if it falls outside the physical rapidity range
for the given x⊥ value.
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A.3.2 pTmin Ordering

In conventional pT ordering, as above, the measured quantity is always defined as the pT of the
emitted gluon with respect to the parent antenna.

However, if a recoiling parent becomes soft (eg via a collinear branching where the “emit-
ted” gluon takes most of the energy), then there is both an ambiguity about what constitutes
“the parent antenna”, and, if the parent that becomes soft is a gluon, a neighbouring antenna
may “accidentally” acquire a small pT resolution scale after the branching, simply due to the
momentum-conservation / recoil effect.

An alternative is to define the evolution scale as the smallest resolution scale of any of the
post-branching partons with respect to each other, a choice we refer to as p⊥min. The effects of
these choices have not so far been well studied. Note that this choice differs from the “sector
antenna” approach in that it is still only the local 2 → 3 branching variables that are used to
define the scale, without reference to the neighbouring partons’ momenta. The definition of
p2
⊥min is:

p2
⊥min = sIKmin(yijyjk, yjkyik, yikyij) . (A.40)

The upper limit for this variable on the physical branching phase space is:

p2
⊥min ≤

sIK
9

; x⊥max ≤
1

9
, (A.41)

with the maximum value reached for the point (yij, yjk) = (1
3
, 1

3
); the Mercedes point.

Equidistant contours of p⊥min and of the complementary phase-space variable ζ (see below)
are plotted in fig. 2, on linear (left) and logarithmic (right) scales, with the radiation pattern of a
qq̄ → qgq̄ antenna superimposed in shades from blue (low probability) to yellow (high probabil-
ity). As can clearly be seen from the plots, it is the behaviour in the two hard-collinear regions
that is modified (as well as the behaviour in the nonsingular hard region in which the invariant
between the two parent partons can become accidentally small), while the behaviour for soft-
gluon emission is not modified. The point of symmetry is the Mercedes point, which constitutes
the “most resolved” branching according to this evolution variable. The main difference with
respect to evolution in the conventional pT variable should be to “push” hard-collinear branch-
ings to occur at lower evolution scales. Such branchings will therefore receive more significant
Sudakov suppression, while branchings in the soft and wide-angle region will receive slightly
less suppression.

We divide the trial generation into three regions,

Region J : yijyjk < yik min(yij, yjk) (A.42)

Region I : yijyik < yjk min(yij, yik) (A.43)

Region K : yikyjk < yij min(yik, yjk) (A.44)

corresponding to each of the three p⊥ definitions.
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Figure 2: Left: equidistant contours of constant x⊥min and corresponding ζ (with 0.025 between
x⊥min contours and 0.25 between ζ ones) functions of yij and yjk. Right: equidistant contours
of constant ln(x⊥min) and y (with 0.5 between ln(x⊥min) contours and 0.25 between ζ ones), as
functions of ln yij and ln yjk.

The Soft-Gluon Region, J: In region J, we can use the same trial generation machinery as for
the conventional pT ordering, with the p⊥j < min(p⊥i, p⊥k) criterion imposed by veto. To make
things slightly more efficient, we note that the trial generation in region J can be restricted to the
smaller rapidity range

Region J : ytrial
± = ±1

2
ln

(
1

4x⊥j

)
, (A.45)

∆ytrial = ln

(
1

4x⊥j

)
= ln

(
1

x⊥j

)
− ln(4) . (A.46)

This can be used with the formalism for either a constant or first-order running trial αs.

The I- and K-Collinear Regions: In the two other regions, we use a collinear trial-function
overestimate. For regions I and K (in which partons i and k, respectively, are considered the
softest partons), it is:

āEi =
4

yij
(A.47)

āEk =
4

yjk
(A.48)

With these functions, it is convenient to choose ζ = 2yik as the complementary phase-space
variable, whose maximal range is [0, 1] in each of the I- and K-collinear regions. A better lower
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bound can be obtained by noting that the lowest ζ value for a given x⊥ is obtained for the point
yij = yjk, yielding

ζmin(x⊥) = 1−
√

1− 8x⊥ ≥ 4x⊥ . (A.49)

The Jacobian for transforming from (yij, yjk) to (x⊥, ζ) in the I- and K-collinear regions is
then |J | = 1/(2yik), so that the trial function in the transformed coordinates is again just:

āEi|J | = āEk|J | =
2

x⊥
. (A.50)

A trial ζ can then be generated uniformly on the interval [ζmin, 1] and rejected if it falls outside
the physical phase space for the relevant region.

A.4 Gluon Splitting
A.4.1 pT Ordering

For gluon splittings, the definition of pT is somewhat more ambiguous than it is for gluon emis-
sions. For instance, even if one uses the same functional form as is used for gluon emissions,
which parton should be thought of as the “emitted” one? Is it the quark, or the antiquark, or some
combination thereof? The first option we consider is to define pT ordering for gluon splittings to
be as close to what is used for gluon emissions as possible. Thus, for a colour antenna in which
the gluon acts as the anticolour source (e.g., gluon splitting in a qg antenna), we define the p⊥
as that of the produced antiquark, with the produced quark taking the role of a recoiling parent.
For a colour antenna in which the gluon acts as the colour source (e.g., gluon splitting in a gq̄
antenna), we define the p⊥ as that of the quark, with the antiquark acting as a recoiling parent.

Labeling the participating partons as gIXK → qiq̄jXk, with X an arbitrary recoiler, we have
mI = 0, mi = mj = mq, and mk = mK . Depending on whether it is the colour or anticolour,
respectively, of the gluon which is active in the splitting, the corresponding p2

⊥ scale is:

p2
⊥i =

(m2
ij −m2

I)(m
2
ik −m2

K)

sIK
=

m2
ij(m

2
ik −m2

k)

m2
IK −m2

k

=
(sij + 2m2

q)(sik +m2
q)

sIK

(A.51)

p2
⊥j =

(m2
ij −m2

I)(m
2
jk −m2

K)

sIK
=

(m2
ij(m

2
jk −m2

k)

m2
IK −m2

k

=
(sij + 2m2

q)(sjk +m2
q)

sIK
,

(A.52)

where the first equality just recalls our general definition of p⊥ and the latter ones specialise to
the case of gluon splitting.
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As the complementary phase-space invariant ζ , we take the nonsingular invariant in the cor-
responding pT definition,

ζi = yik + µ2
q =

sik +m2
q

sIK
, (A.53)

ζj = yjk + µ2
q =

sjk +m2
q

sIK
, (A.54)

with the inverse relations:

sij = sIK
x⊥
ζ
− 2m2

q =⇒ m2
ij = sIK

x⊥
ζ
, (A.55)

sik = sIKζi −m2
q , (A.56)

sjk = sIKζj −m2
q . (A.57)

Trial Function: The gluon splitting functions are all proportional to 1/(2m2
ij), hence we use

the trial overestimate:
āS =

sIK
2m2

ij

=
1

2(yij + 2µ2
q)

=
ζ

2x⊥
(A.58)

Trial Integrals: The trial integral is, symbolically,

AS = fKällén

nfTR
8π

∫ Q2
1

Q2
2

α
dyijdyjk

(yij + 2µ2
q)
. (A.59)

The Jacobian for transforming to (x⊥, ζ) is 1/ζ:

dyijdyjk = dx⊥
dζ

ζ
, (A.60)

so that the trial integral becomes

AS = fKällén

nfTR
8π

∫ x2
⊥1

x2
⊥2

α
dx⊥
x⊥

dζ . (A.61)

The ζ limits can be overestimated by the constant range [µ2
q, 1−3µ2

q], with the physical region
(identified for the case of general masses by positivity of the Gram determinant) imposed by veto.
Using this, we have:

∆ζtrial = 1− 4µ2
q . (A.62)

For a constant trial αs, the trial integral is thus:

AS = αfKällén

nfTR
8π

∆ζtrial

∫ x⊥1

x⊥2

dx⊥
x⊥

(A.63)

= αfKällén

nfTR
8π

∆ζtrial ln

(
x⊥1

x⊥2

)
. (A.64)

12



Solving the equationR = exp(−AS) yields:

Constant trial αs : x⊥2 = x⊥1R1/(αIS) (A.65)

with

IS =
fKällénnfTR∆ζtrial

8π
. (A.66)

For a one-loop running trial αs, the same integral as for gluon emission applies, modulo the
colour factor and the overall factor 1/4:

Running trial αs : p2
⊥2 =

Λ2

kR

(
p2
⊥1

(Λ2/kR)

)Rb0/IS
. (A.67)

With an x⊥ generated according to either of these expressions, a trial ζ is generated as:

ζtrial = µ2
q +Rζ∆ζ

trial , (A.68)

to be vetoed if it falls outside the physical phase space (as given by positivity of the Gram
determinant).

A.4.2 pTmin Ordering

As an alternative to the above, it is also possible to use the minimum of the quark or antiquark
pT as the ordering variable.

A.4.3 mass Ordering

A third option is to use the invariant mass of the splitting gluon as the ordering variable.

A.5 Kinematics Construction
The trial value for the complementary phase-space invariant, here denoted ζ , is found by inverting
the equation

Rζ =
Iζ(ζmin, ζ)

Iζ(ζmin, ζmax)
, (A.69)

where the boundary values (ζmin, ζmax) must be the same as those that were used to evaluate the
Iζ integrals during the generation of the trial scale, i.e., they must correspond to the phase-space
overestimate used for the trial generation.

The generated value of ζ can now be compared to the limits imposed by the physical phase
space at the generated value of Q and a rejection imposed if the generated ζ value falls outside
the phase space.
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Inverting the expressions for Q2(sij, sjk) and ζ(sij, sjk), the set of branching invariants is
found. The energies in the CM frame of the branching system can then be constructed from

Ei =
m2 −m2

jk +m2
i

2m
(A.70)

Ej =
m2 −m2

ik +m2
j

2m
(A.71)

Ek =
m2 −m2

ij +m2
k

2m
, (A.72)

with m2 = m2
IK the invariant mass squared of the antenna. The relative angles between the

momenta are given by:

cos θij =
2EiEj +m2

i +m2
j −m2

ij

2|~pi||~pj|
(A.73)

cos θjk =
2EjEk +m2

j +m2
k −m2

jk

2|~pj||~pk|
. (A.74)

(A.75)

In terms of the dot-product sij ≡ 2pi · pj variables, the relations are:

m2 = sij + sjk + sik +m2i+m2j +m2kEi =
sij + sik + 2m2

i

2m
(A.76)

Ej =
sjk + sij + 2m2

j

2m
(A.77)

Ek =
sik + sjk + 2m2

k

2m
, (A.78)

cos θij =
2EiEj − sij

2|~pi||~pj|
(A.79)

cos θjk =
2EjEk − sjk

2|~pj||~pk|
. (A.80)

(A.81)

The final orientation also depends on the choice of global recoil angle, ψIi, which represents
the angle between the pre- and post-branching partons I and i, around an axis perpendicular to
the CM branching plane. Various specific forms can be chosen in the code, all of which must
have the following collinear limits:

sjk → 0 : ψIi → 0 , (A.82)

sij → 0 : ψKk = ψIi + θik − π → 0 . (A.83)
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A.6 Antenna Functions
For each antenna function, a full set of helicity-dependent antenna function contributions are
implemented. For partons without helicity information, the unpolarised forms (summed over
post-branching helicities and averaged over pre-branching ones) are used.

The functional forms given below omit colour and coupling factors. They are all normalised
so that a factor g2

sCA = 4παsCA is appropriate in the leading-colour limit, with CA = 3 replaced
by TR = 1 for gluon splittings. Corrections for subleading colour are discussed separately, in
sec. A.7.

Some of the helicity-dependent antenna functions would not be positive definite over the full
branching phase space if only the singular terms were included. In particular the emission of
a gluon with opposite helicity to that of its parents can be negative for very hard emissions if
only singular terms are included; nonsingular terms have then been added to render the full set
of helicity-dependent antenna functions positive definite over all of phase space.

We here give only the forms for so-called “global” antenna functions, as sector antenna func-
tions have not been fully implemented in the present VINCIA version.

The ij collinear limit of the functions can be studied by identifying Q2 = sij → 0 and

zi =
xi

xi + xj
=
sIK − sjk
sIK + sij

, (A.84)

thus

sij → Q2 (A.85)

sjk → (1− zi) sIK (A.86)

sik → zi sIK (A.87)

and similarly for the ik collinear limit, with i↔ k.

A.6.1 QQemitFF

The helicity-averaged antenna function is:

a(qIqK → qigjqk) =
1

sIK

[
2yik
yijyjk

− 2µ2
I

y2
ij

− 2µ2
K

y2
jk

+
yjk
yij

+
yij
yjk

+ 1

]
(A.88)

=
1

sIK

[
(1− yij)2 + (1− yjk)2

yijyjk
− 2µ2

I

y2
ij

− 2µ2
K

y2
jk

+ 1

]

= A0
3 + 1 . (A.89)

Note: the A0
3 function in GGG is derived from Z decay alone, while ours is the average of the

Z0 ones for +−/−+ (J = 1) parent configurations and and the H0 ones for ++/−− (J = 0)
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ones. The difference between our antenna function and the GGG one is the +1 nonsingular term
which is absent in the GGG A0

3.
The collinear limits of this antenna function are:

a(yij → 0, yjk = 1− xi) =
1

m2
ij −m2

I

[
1 + x2

i

1− xi
− 2m2

I

m2
ij −m2

I

]
, (A.90)

a(yij = 1− xk, yjk → 0) =
1

m2
jk −m2

K

[
1 + x2

k

1− xk
− 2m2

K

m2
jk −m2

K

]
(A.91)

The individual helicity contributions are (chosen such that all antenna functions remain pos-
itive definite over all of phase space):

a(++→ + + +) =
1

sIK

[
1

yijyjk
− µ2

i

y2
ij(1− yjk)

− µ2
k

y2
jk(1− yij)

]
(A.92)

a(++→ +−+) =
1

sIK

[
(1− yij)2 + (1− yjk)2 − 1

yijyjk
+ 2− µ2

i (1− yjk)
y2
ij

− µ2
k(1− yij)
y2
jk

]
(A.93)

a(++→ −+ +) =
1

sIK

[
µ2
i y

2
jk

y2
ij

1

1− yjk

]
(A.94)

a(++→ + +−) =
1

sIK

[
µ2
ky

2
ij

y2
jk

1

1− yij

]
(A.95)

a(+− → + +−) =
1

sIK

[
(1− yij)2

yijyjk
− µ2

i

y2
ij(1− yjk)

− µ2
k(1− yij)
y2
jk

]
(A.96)

a(+− → +−−) =
1

sIK

[
(1− yjk)2

yijyjk
− µ2

i (1− yjk)
y2
ij

− µ2
k

y2
jk(1− yij)

]
(A.97)

a(+− → −+−) =
1

sIK

[
µ2
i y

2
jk

y2
ij(1− yjk)

]
(A.98)

a(+− → +−+) =
1

sIK

[
µ2
ky

2
ij

y2
jk(1− yij)

]
. (A.99)

Note that the sum of the ++ antenna functions has the same singularities as the sum of the +-
ones, thus the same singular terms are obtained when summing over the helicity of the emitted
gluon, irrespective of parent helicities.
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Note that, for a scalar decay, the helicity-flip one (++→ +−+) has to go to zero on the hard
boundary (xj = 1−yik = yij+yjk = 1). In principle, one could (?) envision lifting this constraint
(e.g., by adding a finite term that vanishes on the collinear boundaries, like yijyjk) to account for
t-channel processes which could produce a ++ state with a higher total angular momentum, e.g.,
J = 2. Matrix-element corrections for scalar decay would then bring the matched result back to
zero (which corresponds to the +2 finite term in the +−+ antenna), whiler MECs for t-channel
processes could be non-zero. In the corresponding IF antenna, the finite term is instead chosen
to be +3 − y2

aj − y2
jk which remains zero at the hard-collinear points but is nonzero along the

diagonal.

A.6.2 QGemitFF

The helicity average (for unpolarised partons), for our default choice of gluon-collinear parti-
tioning parameter α = 0 (see below) is:

a(qIgK → qigjgk)|α=0 =
1

sIK

[
2yik
yijyjk

− 2µ2
I

y2
ij

+
yjk
yij

+
yij(1− yij)

yjk
+ yij +

yjk
2

]

=
1

sIK

[
(1− yij)3 + (1− yjk)2

yijyjk
− 2µ2

I

y2
ij

+
yik − yij
yjk

+ 1 + yij +
yjk
2

]
(A.100)

µI=0
= d0

3 −
5

2
+ 2yij + yjk . (A.101)

The collinear limits of this antenna function are:

a(yij → 0, yjk = 1− xi, α = 0) =
1

m2
ij −m2

I

[
1 + x2

i

1− xi
− 2m2

I

m2
ij −m2

I

]
,(A.102)

a(yij = 1− xk, yjk → 0, α = 0) =
1

m2
jk

2xk + xk(1− xk)2

(1− xk)
, (A.103)

a(1− xk, yjk → 0) + a(xk, yjk → 0, α = 0) =
2

m2
jk

(1− xk(1− xk))2

xk(1− xk)
(A.104)

Note 1: the D0
3 function in GGG is derived from neutralino decay and contains a sum over

both of the permutations of the gluons. Our function corresponds to the sub-antenna function d0
3

from which it only differs by nonsingular terms.
Note 2: the singularity structure of the qg → qgg radiation function used in ARIADNE dif-

fers from ours by a term proportional to (yik − yij), which vanishes when summing over two
neighbouring antennae (it is antisymmetric under interchange of the two gluons, j and k). Our
parametrisation is chosen to agree with the GGG one which also has the property of minimising
the sub-antenna contribution in the hard-collinear jk limit yij → 1, corresponding to xk → 1.
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(Those configurations are then maximally populated by the soft limit of the neighbouring an-
tenna, which minimises the problem of recoils producing disparate pT scales.) For completeness,
the helicity average obtained for α = 1 (corresponding to the choice made in ARIADNE) is:

a(qIgK → qigjgk)|α=1 =
1

sIK

[
(1− yij)3 + (1− yjk)2

yijyjk
− 2µ2

I

y2
ij

+ 2− yij −
yjk
2

]
.(A.105)

For general collinear-partitioning parameter α, the individual helicity contributions are:

a(++→ + + +) =
1

sIK

[
1

yijyjk
+ (1− α)(1− yjk)

(
1− 2yij − yjk

yjk

)
− µ2

i

y2
ij(1− yjk)

]
,

(A.106)

a(++→ +−+) =
1

sIK

[
(1− yij)y2

ik

yijyjk
− µ2

i (1− yjk)
y2
ij

]
, (A.107)

a(++→ −+ +) =
1

sIK

[
µ2
i y

2
jk

y2
ij(1− yjk)

]
, (A.108)

a(+− → + +−) =
1

sIK

[
(1− yij)3

yijyjk
− µ2

i

y2
ij(1− yjk)

]
, (A.109)

a(+− → +−−) =
1

sIK

[
(1− yjk)2

yijyjk
+ (1− α)(1− yjk)

(
1− 2yij − yjk

yjk

)
− µ2

i (1− yjk)
y2
ij

]
,

(A.110)

a(+− → −+−) =
1

sIK

[
µ2
i y

2
jk

y2
ij(1− yjk)

]
. (A.111)

where again we remind that the GGG choice is obtained for α = 0 while the ARIADNE one
corresponds to α = 1.

Note that the sum of the ++ antenna functions has the same singularities as the sum of the +-
ones, thus the same singular terms are obtained when summing over the helicity of the emitted
gluon, irrespective of parent helicities.
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A.6.3 GGemitFF

The helicity-averaged antenna function (for our default choice of gluon-collinear partitioning
parameter α = 0) is:

a(gIgK → gigjgk) =
1

sIK

[
2yik
yijyjk

+
yjk(1− yjk)

yij
+
yij(1− yij)

yjk
+

1

2
yij +

1

2
yjk

]
(A.112)

=
1

sIK

[
(1− yij)3 + (1− yjk)3

yijyjk
+
yik − yij
yjk

+
yik − yjk
yij

+ 2 +
1

2
yij +

1

2
yjk

]
(A.113)

= f 0
3 −

2

3
− 2yik (A.114)

= f 0′

3 − 1− yik (A.115)

The collinear limits of this antenna function are:

a(yij = 1− xk, yjk → 0) =
1

m2
jk

2xk + xk(1− xk)2

(1− xk)
, (A.116)

a(1− xk, yjk → 0) + a(xk, yjk → 0) =
2

m2
jk

(1− xk(1− xk))2

xk(1− xk)
(A.117)

with the equivalent limits for yij → 0 obtained by i↔ k.
Note 1: the F 0

3 function in GGG is derived from Higgs decay and contains a sum over all
three of the permutations of the gluons. Our function corresponds to the sub-antenna function
f 0

3 from which it only differs by finite terms. The f 0′
3 function in the last line is an equivalent

reparametrisation of f 0
3 which only differs by terms that cancel when summing over permuta-

tions. It is
f 0′

3 =
2yik
yijyjk

+
yikyij
yjk

+
yikyjk
yij

+ 2 + yij + yjk . (A.118)

Note 2: the sum of our ++ and – functions is equal to the GGG f 0
3 function modulo a

reparametrisation which vanishes when summing over gluon permutations, hence the sum of
those radiation functions is equal to F 0

3 .
Note 3: the singularity structure of the gg → ggg radiation function used in ARIADNE

differs from ours by terms proportional to (yik − yij)/yjk and (yik − yjk)/yij , which vanish
when summing over neighbouring antennae (they are antisymmetric under interchange of gluons
jk and ij respectively). Our parametrisation is chosen to agree with the GGG one which also
has the property of minimising the sub-antenna contribution in the hard-collinear limits. (Those
configurations are then maximally populated by the soft limit of the neighbouring antenna, which
minimises the problem of recoils producing disparate pT scales.)
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The individual helicity contributions are:

a(++→ + + +) =
1

sIK

[
1

yijyjk
(A.119)

+(1− α)

(
(1− yij)

1− 2yjk − yij
yij

+ (1− yjk)
1− 2yij − yjk

yjk

)]

a(++→ +−+) =
1

sIK

[
y3
ik

yijyjk

]
(A.120)

a(+− → + +−) =
1

sIK

[
(1− yij)3

yijyjk
+ (1− α)(1− yij)

1− 2yjk
yij

]
, (A.121)

a(+− → +−−) =
1

sIK

[
(1− yjk)3

yijyjk
+ (1− α)(1− yjk)

1− 2yij
yjk

]
. (A.122)

Note that the sum of the two ++ antenna functions has the same singularities as the sum of the
two +- ones, thus the same singular terms are obtained when summing over the helicity of the
emitted gluon, irrespective of parent helicities.

A.6.4 GXsplitFF

For the generic case of a massive recoiler, gX → qq̄X , the energy of the parent gluon in the gX
rest frame is EI = (m2

IK −m2
K)/(2mIK) = sIK/2mIK . The energy fractions of the daughter

quarks may then be defined as xj = Ej/EI and similarly for xi, which implies the following
relations with the branching invariants,

xj = 1− yik (A.123)

xi = 1− yjk , (A.124)

This remains valid for generic quark masses, mi,j . The helicity-averaged antenna function is:

a(gIXK → qiq̄jXk) =
1

2m2
ij

[
(1− xi)2 + (1− xj)2 +

2m2
q

m2
ij

]
(A.125)

=
1

2sIK

1

yij + 2µ2
q

[
y2
ik + y2

jk +
2µ2

q

yij + 2µ2
q

]
. (A.126)
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The individual helicity contributions are:

a(+X → +−X) =
1

2m2
ij

[
(1− xj)2 − m2

q

m2
ij

(1− xj)
xj

]
(A.127)

=
1

2sIK

1

yij + 2µ2
q

[
y2
ik −

µ2
q

yij + 2µ2
q

yik
1− yik

]
, (A.128)

a(+X → −+X) =
1

2m2
ij

[
(1− xi)2 − m2

q

m2
ij

(1− xi)
xi

]
(A.129)

=
1

2sIK

1

yij + 2µ2
q

[
y2
jk −

µ2
q

yij + 2µ2
q

yjk
1− yjk

]
, (A.130)

a(+X → + +X) =
1

2m2
ij

m2
q

m2
ij

[
1− xi
xi

+
1− xj
xj

+ 2

]
(A.131)

=
1

2sIK

µ2
q

(yij + 2µ2
q)

2

[
yik

1− yik
+

yjk
1− yjk

+ 2

]
. (A.132)

Note that, in the first antenna function, the quark (i) “inherits” the gluon helicity, while in the
second one, the antiquark (j) inherits it. The x → 1 limits are suppressed for the x that carries
the opposite helicity to that of the splitting gluon. (The third one corresponds to a helicity flip on
one of the final-state quarks and is hence proportional to m2

q .)

A.7 Subleading Colour Corrections
In the strict leading-colour limit, all the gluon-emission antenna functions discussed above are
normalized to be proportional to CA = NC = 3. This will obviously overcount the emission rate
from quarks, which should be proportional to 2CF = 8/3 (in the same normalisation convention
for colour factors that is used throughout VINCIA). In most VINCIA versions until at least
v.2.2.02, only the following corrections to this are included in VINCIA:

• qq̄ antennae are always proportional to 2CF .

• qg antennae are proportional to the average CF +CA/2, making the error in both the quark
and gluon collinear limits of order 1/(2N2

C) ∼ 5%.

• Matrix-element corrections (up to the corrected order) are computed at full colour, thus
allowing to reabsorb eg the full-colour normalisation of the LEP 4- and 5-jet rates.

In this section, we discuss how further improvements can be implemented, starting from the strict
LC approximation.

The treatment is divided into two pieces, one called the “antenna on the back” and the other
the “multipole correction”. The first of these ensures that collinear radiation from quarks is
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always proportional to 2CF and also modifies the soft-emission pattern in agreement with known
results for double-gluon emission from a qq̄ pair. The second is a correction which vanishes
in the collinear limits but which introduces further modifications to the soft radiation patterns
(essentially from interference between two or more antennae acting coherently), in agreement
with known results for qq̄ amplitudes with up to four emitted gluons.

A.7.1 The Antenna on the Back

The soft limit of the QCD amplitude for a quark-antiquark pair and two gluons can be represented
as a sum over leading-colour eikonal terms (proportional to CA) minus a “QED-like” eikonal
spanned directly between the qq̄ pair and proportional to −1/NC [1]. We note that in directions
collinear to the quark or antiquark, this evidently adds up to 2CF , as desired. Since this pattern
also appears in amplitudes with higher numbers of emitted gluons (but then only as a part of
the full subleading-colour corrections, see the section on colour multipoles below), we include
it as a generic correction to the radiation from any chain of partons spanned between a quark
and antiquark with an arbitrary number of intermediate gluons. Due to the negative sign, it
cannot simply be included as an additional probabilistic radiation process (at least not within a
positive-definite framework), and it would also not be clear how to represent it in colour space
(the most direct interpretation being that a QED-like gluon should be represented as a singlet).
Instead, we absorb the correction into the leading-colour pieces, in a manner which guarantees
positive-definite radiation functions (at least in the strictly soft limit). We also note that this can
be done independently for each colour ordering, since the soft QED-like gluon does not change
the relative colour ordering of any hard gluons in the amplitude [1].

A first attempt at this was made in [2], where a simple strictly positive-definite correction fac-
tor was defined in complete analogy with VINCIA’s matrix-element corrections. In this original
approach all of the leading-colour antennae had their radiation strengths reduced slightly,

ai → aiRNLC (A.133)

with the subleading-colour correction factor 0 < RNLC < 1 defined as:

RNLC =

∑
i∈LCCAai − 1

NC
aqq̄∑

i∈LC CAai
(A.134)

This way of absorbing the correction was since abandoned since the explicit sum over all leading-
colour contributions required performing all possible (n + 1) → n-parton clusterings, which
could become extremely time consuming for large parton systems. A trivial exception is the
radiation from a qq̄ antenna with no intermediate gluons, which just becomes proportional to
2CF , hence we just adopt that choice for qq̄ antennae and the procedure below is applied to
radiation from chains with at least one intermediate gluon.

A less computationally intensive approach is the following. First, the collinear limits of
the antenna on the back are absorbed into a redefinition of the qg helicity antenna functions
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(assuming the LC antennae are normalised to CA):

aq+
I gK→q

+
i g

+
j gk

= aLC
q+
I gK→q

+
i g

+
j gk
− 1

N2
C

1

m2
IK

[
1

yij(yij + yjk)

]
(A.135)

aq+
I gK→q

+
i g
−
j gk

= aLC
q+
I gK→q

+
i g
−
j gk
− 1

N2
C

1

m2
IK

[
1

yij(yij + yjk)
+
yjk + yij − 2

yij

]
(A.136)

A partitioning factor yjk/(yij + yjk) has been applied to the eikonal terms to distribute them
among the q and q̄ collinear limits, and for the single-pole collinear terms we have used that the
collinear splitting fraction zi = 1 − yjk = 1 − sjk/m

2
IK is equal to that of the QED antenna,

z′i = 1− sjq̄/sqjq̄ in the qj collinear limit. This ensures that both the q and q̄ collinear limits will
have the correct colour factor.

The pure soft structure of the antenna on the back is represented as a pure eikonal proportional
to 1

p2
⊥QED

. This is absorbed by identifying the LC sector with the smallest p2
⊥ scale and subtracting

the following correction, which takes into account that the qg and gq̄ antennae have already
absorbed their parts:

ahel = aLC
hel +

1

N2
C

[
1

p2
⊥1

s12

sq1 + s12

+
1

p2
⊥n

sn−1,n

sn−1,n + snq̄
− 1

p2
⊥QED

]
(A.137)

where the (colour-ordered) gluons are indexed from 1 to n (so the quark would have index 0
and the antiquark index n + 1). The “hel” subscript emphasises that this correction is added to
each of the helicity antennae, so that antenna functions where the helicity of the emitted gluon is
summed over will have twice as large a correction.

A.7.2 The Colour-Multipole Correction

...

A.8 Choice of (Re)start Scale for Next Trial
The trial Sudakov factor is defined as:

∆̂(Q2
1, Q

2
2) = exp

[
−Â(Q2

1, Q
2
2)
]
, (A.138)

and the next trial scale is found by solving the equation:

R = ∆̂(Q2, Q2
new) , (A.139)

for Qnew, with R a random number distributed uniformly in the interval R ∈ [0, 1], and Q
the current “restart scale”. For strongly ordered showers, the restart scale after an accepted
trial branching is the evolution scale of the last generated branching. For smoothly ordered
showers, this restart scale is only used for antennae that are not color-adjacent to the branching

23



that occurred; for the newly created antennae, and (optionally) for any color-adjacent ones, the
restart scale is the respective antenna invariant masses2.

For both strongly and smoothly ordered showers, the restart scale after a failed (vetoed) trial
branching is the scale of the failed branching.

Note: to optimize event generation, trial scales can be saved and reused for any antennae
whose flavors, spins, and invariant masses are preserved by the preceding branching step.

B Initial–Initial Evolution Equations

B.1 Notation and Kinematic Relations
We denote the pre- and post-branching partons by AB → ajb, respectively, for initial-state
partons A and B evolving backwards to partons a, j, and b, with j in the final state and a and b
in the initial state. (From the perspective of forwards evolution, partons a and b emit parton j.)
For branchings involving initial-state partons, there is the additional aspect of the “hard system”,
which we denote R (for “recoiler”) and which in general experiences a frame reinterpretation
(Lorentz transformation = rotation + boost) as a consequence of the branching. Thus, the pre-
branching system is AB → R, with momentum conservation implying pA + pB = pR, and the
post-branching system is ab→ j + r with pa + pb − pj = pr. For general masses, and using the
notation s12 ≡ 2p1 ·p2, conservation of the invariant mass of the hard system (mR = mr) implies
the relations

m2
ab ≡ sab +m2

a +m2
b = sAB + saj + sjb +m2

A +m2
B −m2

j , (B.1)

sAB +m2
A +m2

B = sab − saj − sjb +m2
a +m2

b +m2
j . (B.2)

For dimensionless equivalents, we normalise by the largest invariant, sab, hence for example

1 + µ2
a + µ2

b = yAB + yaj + yjb + µ2
A + µ2

B − µ2
j . (B.3)

When a gluon is emitted into the final state we have mA = ma, mB = mb, and mj = 0,
hence

Final-state gluon emission: sab − saj − sjb = sAB . (B.4)

For quark creation (a.k.a. quark conversion: a quark backwards evolving to a gluon) on side a,
we have ma = 0, mA = mq, mj = mq, and mB = mb, hence also

ga → qAq̄j: sab − saj − sjb = sAB , (B.5)

For gluon creation (aka gluon conversion; a gluon backwards evolving to a quark) on side a, we
have ma = mq, mA = 0, mj = mq, and mB = mb, hence

qa → gAqj: sab − saj − sjb + 2m2
q = sAB . (B.6)

Note that, although the relations above have been expressed for branchings with general
masses, the current initial-state shower implementation assumes incoming legs to be explicitly
massless.

2This allows hard 2 → n branchings to be generated inside the newly created antennae (and optionally within
the color-adjacent ones) without disturbing the evolution of the rest of the event.
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B.2 Crossing Relations
Compared to the FF case, crossing symmetry for the case when the recoiling partons i and k are
crossed to be identified with a and b, respectively, implies

yik →
sab
sAB
≡ 1/z (B.7)

yij → − saj
sAB
≡ −yaj/z (B.8)

yjk → − sjb
sAB
≡ −yjb/z . (B.9)

For crossings of partons i→ a and j → b,

yik → − sak
sAB
≡ −yak/z (B.10)

yij →
sab
sAB
≡ 1/z (B.11)

yjk → − skb
sAB
≡ −ykb/z , (B.12)

where, if desired, one can obviously do a relabeling k → j for the II antennae such that the
parton that remains in the final state is still labeled j.

For crossings of partons j → a and k → b,

yik → − sib
sAB
≡ −yib/z (B.13)

yij → − sai
sAB
≡ −yai/z (B.14)

yjk →
sab
sAB
≡ 1/z . (B.15)

Note also that outgoing particles are mapped to incoming particles with the opposite helici-
ties, so that, e.g., the II antenna function for (q̄+

Aq
+
B → q̄+

a g
+
j q

+
b ) is obtained from the FF one for

(q−I q̄
−
K → q−i g

+
j q̄
−
k ).

Finally, we note that, in the current implementation of initial-state antenna functions, there
are no II antenna functions for “emission into the initial state”; specifically, when both partons
j and k are gluons, the crossing of ij is not used and similarly when both i and j are gluons.
Taking the FF function for qg → qgg as an example, the function resulting from crossing quark
i and gluon j is not used. (Instead, those terms are associated with emissions in the IF antenna
between parton b and the recoiler, which produces the same colour structure). This is a choice
of convention which effectively corresponds to a partial sectoring of the initial-state shower. It
could be changed if future directions warrant it. Presently, the colour chain a − b − j − R only
contains the (IF) clustering of j into b and R but not one corresponding to “clustering” b into a
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and j (hence the name “emission into the initial state”). The abj antenna function and clustering
could still be envisioned (with a corresponding subtraction of the terms present in the current bjR
one); it would use an II kinematics map, possibly with fixed xa. The choice of which mapping
is associated with these terms affects whether they generate recoils (II) or not (IF). It could be
an interesting student project to expand to “emissions into the initial state” and see how this
affects recoil distributions, possibly in association with using an II map for the initial part of IF
antennae.

B.3 Antenna Functions
B.3.1 QQemitII

The helicity-averaged antenna function is:

a(q̄AqB → q̄agjqb) =
1

sAB

[
2yAB
yajyjb

+
yjb
yaj

+
yaj
yjb

+ 1− 2µ2
a(1− yjb)
y2
aj

− 2µ2
b(1− yaj)
y2
jb

]
(B.16)

=
1

sAB

[
(1− yaj)2 + (1− yjb)2

yajyjb
+ 1− 2µ2

a(1− yjb)
y2
aj

− 2µ2
b(1− yaj)
y2
jb

]
.

(B.17)

The collinear limit of this antenna function is:

a(yaj → 0, yjb → 1− z) =
1

z

1

saj

[
1 + z2

1− z −
2zm2

a

saj

]
(B.18)

For comparison to standard DGLAP splitting kernels, note that saj = 2pa · pj = −((pa − pj)2 −
m2
a) = −(pa − pj)2 +m2

a ≡ Q2
A +m2

a.
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The individual helicity contributions are:

a(++→ + + +) =
1

sAB

[
1

yajyjb
− µ2

a

y2
aj

− µ2
b

y2
jb

]
, (B.19)

a(++→ +−+) =
1

sAB

[
y2
AB

yajyjb
− µ2

a(1− yjb)2

y2
aj

− µ2
b(1− yaj)2

y2
jb

]
, (B.20)

a(++→ −−+) =
1

sAB

[
µ2
ay

2
jb

y2
aj

]
, (B.21)

a(++→ +−−) =
1

sAB

[
µ2
by

2
aj

y2
jb

]
, (B.22)

a(+− → + +−) =
1

sAB

[
(1− yaj)2

yajyjb
− µ2

a

y2
aj

− µ2
b(1− yaj)2

y2
jb

]
, (B.23)

a(+− → +−−) =
1

sAB

[
(1− yjb)2

yajyjb
− µ2

a(1− yjb)2

y2
aj

− µ2
b

y2
jb

]
, (B.24)

a(+− → −−−) =
1

sAB

[
µ2
ay

2
jb

y2
aj

]
, (B.25)

a(+− → −+ +) =
1

sAB

[
µ2
by

2
aj

y2
jb

]
. (B.26)

Note that the sum of the ++ antenna functions has the same singularities as the sum of the +-
ones, thus the same singular terms are obtained when summing over the helicity of the emitted
gluon, irrespective of parent helicities.

B.3.2 QGemitII

The helicity-averaged antenna function is:

a(qAgB → qagjgb) =
1

sAB

[
(1− yaj)3 + (1− yjb)2

yajyjb
+

1 + y3
aj

yjb(1− yaj)
− 2µ2

a(1− yjb)
y2
aj

+ 2− yaj −
yjb
2

]
.

(B.27)
Note that the singular structure differs from the corresponding FF form by the term proportional
to 1/(1 − yaj) which is a “sector” term (necessary since VINCIA does not include a sector
for emission into the initial state). For comparison, the corresponding FF antenna is of the
global type, and includes an antisymmetric j ↔ k term which cancels when summing over
neighbouring antennae.
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The collinear limits are:

a(yaj → 0, yjb → 1− z) =
1

z

1

saj

[
1 + z2

1− z −
2zm2

a

saj

]
, (B.28)

a(yaj → 1− z, yjb → 0) =
1

z

1

sjb

2(1 + z(1− z))2

z(1− z)
(B.29)

For comparison to standard DGLAP splitting kernels, note that saj = 2pa · pj = −((pa − pj)2 −
m2
a) = −(pa − pj)2 +m2

a ≡ Q2
A +m2

a.
The individual helicity contributions are crossings of FF sector antennae (see LLS):

a(++→ + + +) =
1

sAB

[
1

yajyjb

1− yjb
1− yaj − yjb

− µ2
a

y2
aj

]
(B.30)

=
1

sAB

[
1

yajyjb
+

1

yjbyAB
− µ2

a

y2
aj

]
(B.31)

sing→ 1

sAB

[
1

yajyjb
+

1

yjb(1− yaj)
− µ2

a

y2
aj

]
. (B.32)

a(++→ +−+) =
1

sAB

[
1

yajyjb

y3
AB

1− yjb
− µ2

a(1− yjb)2

y2
aj

]
(B.33)

=
y3
AB

sAB

[
1

yajyjb
+

1

yaj(1− yjb)
− µ2

a(1− yjb)2

y2
aj

]
(B.34)

sing→ 1

sAB

[
y3
AB

yajyjb
+
y2
AB

yaj
− µ2

a(1− yjb)2

y2
aj

]
(B.35)

=
1

sAB

[
(1− yaj)y2

AB

yajyjb
− µ2

a(1− yjb)2

y2
aj

]
, (B.36)

a(++→ −−+) =
1

sAB

[
µ2
ay

2
jb

y2
aj

]
, (B.37)

a(++→ +−−) =
1

sAB

[
y3
aj

yjb(1− yjb)
1

1− yaj − yjb

]
(B.38)

sing→ 1

sAB

y3
aj

yjb(1− yaj)
, (B.39)

(B.40)
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a(+− → + +−) =
1

sAB

[
(1− yaj)3

yajyjb
+

1− yjb − y2
aj

1− yjb
− µ2

a(1− yaj)
y2
aj

]
(B.41)

sing→ 1

sAB

[
(1− yaj)3

yajyjb
− µ2

a

y2
aj

]
, (B.42)

a(+− → +−−) =
1

sAB

[
1

yajyjb

(1− yjb)3

1− yaj − yjb
− µ2

a(1− yaj − yjb)2

y2
aj(1− yaj)

]
(B.43)

=
(1− yjb)2

sAB

[
1

yajyjb
+

1

yjb

1

1− yaj − yjb
− µ2

a

y2
aj

(1− yaj − yjb)2

(1− yjb)2(1− yaj)

]
sing→ 1

sAB

[
(1− yjb)2

yajyjb
+

1

yjb(1− yaj)
− µ2

a(1− yjb)2

y2
aj

]
, (B.44)

a(+− → −−−) = a(++→ −−+) , (B.45)

a(+− → + + +) = a(++→ +−−) . (B.46)

Note that, unlike the case for the global (FF) antennae, there are also non-zero sector antenna
functions involving helicity flips of the parent gluons; in a global language, these terms would
be generated by the neighbouring antenna, but since VINCIA currently does not include a sector
for “emission into the initial state”, the terms for which the helicity of incoming parton b is
imparted to the outgoing gluon j, with B having positive helicity, must be included, leading to
the additional sector terms that appear in the functions above (proportional to 1/(yjb(1− yaj)) ∼
1/(yjbz)).

Note: the (1 − yjb) and (1 − yaj) denominators are approximations of 1/yAB denominators
from the crossing. The corresponding 1/z singularity is not well suited for pT resummation (the
divergence sits at finite pT even though it is of course not reached due to the requirement x < 1).
The forms with 1/yAB may still be useful for trial overestimates, since yAB = z over all of our
phase space.

B.3.3 GGemitII

The helicity-averaged antenna function is:

a(gAgB → gagjgb) =
1

sAB

[
(1− yaj)3 + (1− yjb)3

yajyjb
+

1 + y3
aj

yjb(1− yaj)
+

1 + y3
jb

yaj(1− yjb)

+3− 3yaj
2
− 3yjb

2

]
. (B.47)

Note that this form is equivalent to the corresponding FF one, up to the terms proportional to
1/(1− yaj) and 1/(1− yjb) which are “sector” terms (necessary since VINCIA does not include
a sector for emission into the initial state). For comparison, the corresponding FF antenna is of
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the global type, and includes an antisymmetric j ↔ k term which cancels when summing over
neighbouring antennae.

The collinear limits are:

a(yaj → 0, yjb → 1− z) =
1

z

1

saj

2(1 + z(1− z))2

z(1− z)
, (B.48)

a(yaj → 1− z, yjb → 0) =
1

z

1

sjb

2(1 + z(1− z))2

z(1− z)
(B.49)

The individual helicity contributions are crossings of FF sector antennae (see LLS and the
comments and limits taken in the QGEmitII section; here we just give the final forms):

a(++→ + + +) =
1

sAB

[
1

yajyjb
+

1

yjb(1− yaj)
+

1

yaj(1− yjb)

]
, (B.50)

a(++→ +−+) =
1

sAB

y3
AB

yajyjb
, (B.51)

a(+− → + +−) =
1

sAB

[
(1− yaj)3

yajyjb
+

1

yaj(1− yjb)

]
, (B.52)

a(+− → +−−) =
1

sAB

[
(1− yjb)3

yajyjb
+

1

yjb(1− yaj)

]
(B.53)

(B.54)

The nonzero functions involving helicity flips of the parent gluons (see the comments in the
QGEmitII section) are:

a(++→ +−−) =
1

sAB

y3
aj

yjb(1− yaj)
, (B.55)

a(++→ −−+) =
1

sAB

y3
jb

yaj(1− yjb)
, (B.56)

a(+− → + + +) = a(++→ +−−) , (B.57)

a(+− → −−−) = a(++→ −−+) . (B.58)

Note: the (1 − yjb) and (1 − yaj) denominators are approximations of 1/yAB denominators
from the crossing. The corresponding 1/z singularity is not well suited for pT resummation (the
divergence sits at finite pT even though it is of course not reached due to the requirement x < 1).
The difference are the terms that are resummed by programs like HEJ.
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B.3.4 QXsplitII

Quark (or antiquark) in the initial state backwards-evolving into a gluon and emitting an anti-
quark (quark) into the final state. Can be obtained by crossing the QQemitFF functions, with
final-state parton j as one of the crossed partons and relabeling. (Note hence this function does
provide an example of a crossing that corresponds to “emission into the initial state”.)

The helicity-averaged antenna functiuon is:

a(qAXB → gaq̄jXb) =
1

sAB

[
y2
AB + (1− yAB)2

yaj
+

2µ2
jyAB

y2
aj

]
(B.59)

=
1

z

1

saj

[
z2 + (1− z)2 +

2zm2
j

saj

]
(B.60)

The individual helicity contributions are:

a(+X → +−X) =
1

sAB

[
y2
AB

yaj
− µ2

jy
2
AB

y2
aj(1− yAB)

]
, (B.61)

a(+X → −−X) =
1

sAB

[
(1− yAB)2

yaj
− µ2

j(1− yAB)

y2
aj

]
, (B.62)

a(+X → + +X =
1

sAB

[
µ2
j

y2
aj(1− yAB)

]
, (B.63)

a(−X → −+X) = a(+X → +−X) , (B.64)

a(−X → + +X) = a(+X → −−X) , (B.65)

a(−X → −−X) = a(+X → + +X) . (B.66)

Note that the numerators express helicity conservation. The same expressions hold for backwards
evolution of an antiquark, i.e. for q̄AXB.

Note for comparison to standard DGLAP kernels that saj ≡ 2pa ·pj = −((pa−pj)2−m2
j) =

−(pa − pj)2 +m2
j ≡ Q2

A +m2
j , since ma = mg = 0.

B.3.5 GXconvII

Gluon in the initial state backwards-evolving into a quark (or antiquark) and emitting a quark
(antiquark) into the final state. These functions can be obtained by crossing either parton i or j
in the GXsplitFF functions.

The helicity-averaged antenna function (for general ma = mj) is:

a(gAXB → qaqjXb) =
1

2sAB

[
1 + (1− yAB)2

(yaj − 2µ2
j)yAB

− 2µ2
jyAB

(yaj − 2µ2
j)

2

]
. (B.67)
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The individual helicity contributions are:

a(+X → + +X) =
1

2sAB

[
1

(yaj − 2µ2
j)yAB

− µ2
j

(yaj − 2µ2
j)

2

yAB
1− yAB

]
, (B.68)

a(+X → −−X) =
1

sAB

[
(1− yAB)2

(yaj − 2µ2
j)yAB

− µ2
jyAB(1− yAB)

(yaj − 2µ2
j)

2

]
, (B.69)

a(+X → +−X) =
1

sAB

[
µ2
j

(yaj − 2µ2
j)

2

y3
AB

1− yAB

]
, (B.70)

a(−X → −−X) = a(+X → + +X) , (B.71)

a(−X → + +X) = a(+X → −−X) , (B.72)

a(−X → −+X) = a(+X → +−X) . (B.73)

Note that the numerators express helicity conservation. The same expressions hold for backwards
to an antiquark, i.e. for gAXB → q̄aq̄jXb.

Note 2: the 1/yAB denominators could be approximated by 1/(1− yjb) since the 1/z singu-
larity is not well suited for pT resummation (the divergence sits at finite pT even though it is of
course not reached due to the requirement x < 1).

B.4 Evolution Variables
The evolution variables we use are

Q2
⊥ =

sajsjb
sab

=
sajsjb

sAB + saj + sjb
, (B.74)

Q2
A = saj , (B.75)

Q2
B = sjb . (B.76)

Phase Space Boundaries: With sab = sAB +saj +sjb and sab ≤ s, the phase space boundaries
are 0 ≤ saj + sjb ≤ s − sAB and for the single branching invariants 0 ≤ saj ≤ s − sAB and
0 ≤ sjb ≤ s− sAB. The maxima of the evolution variables are

Q2
⊥ max =

1

4

(s− sAB)2

s
, (B.77)

Q2
A max = s− sAB , (B.78)

Q2
B max = s− sAB . (B.79)
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B.5 Zeta Definitions
The choices are

ζ1 =
saj
sab

=
saj

sAB + saj + sjb
= yaj , (B.80)

ζ2 =
saj
sAB

=
sab
sAB

yaj , (B.81)

ζ3 =
sjb
sAB

, (B.82)

ζ4 =
sab
sAB

. (B.83)

The integration boundaries for the ζ variables are

ζ1±(Q2
⊥) =

1

2s

(
s− sAB ±

√
(s− sAB)2 − 4Q2

⊥s

)
, (B.84)

ζ2±(Q2
⊥) =

1

2sAB

(
s− sAB ±

√
(s− sAB)2 − 4Q2

⊥s

)
, (B.85)

ζ3±(Q2
⊥) =

1

2sAB

(
s− sAB ±

√
(s− sAB)2 − 4Q2

⊥s

)
, (B.86)

ζ4−(Q2
A/B) =

sAB +Q2
A/B

sAB
ζ4 +(Q2

A/B) =
s

sAB
. (B.87)

B.6 Jacobians
The Jacobians for the transformation from the phase-space variables, (saj, sjb), to the shower
variables, (QE, ζ), are

|J(Q2
⊥, ζ1)| = sab

1

ζ1(1− ζ1)
, (B.88)

|J(Q2
⊥, ζ2)| = s2

ab

1

saj

1

1 + ζ2

, (B.89)

|J(Q2
⊥, ζ3)| = s2

ab

1

sjb

1

1 + ζ3

, (B.90)

|J(Q2
A, ζ4)| = sAB , (B.91)

|J(Q2
B, ζ4)| = sAB . (B.92)
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B.7 Trial Functions
The following II trial functions are used:

âsoft =
1

sAB

2s2
ab

sajsjb
=

1

sAB

2

yajyjb
, (B.93)

âcoll A = 2
s2
ab

s2
AB

1

saj
=

1

sAB

2

yaj(1− yaj − yjb)
, (B.94)

âcoll B = 2
s2
ab

s2
AB

1

sjb
=

1

sAB

2

yjb(1− yaj − yjb)
, (B.95)

asplit A =
1

sAB

(
−2

sjbsAB
saj(sab − saj)

+
sab
saj

)
⇒ âsplit A =

sab
sAB

1

saj
, (B.96)

asplit B =
1

sAB

(
−2

sajsAB
sjb(sab − sjb)

+
sab
sjb

)
⇒ âsplit B =

sab
sAB

1

sjb
, (B.97)

aconv A =
1

2saj

s2
jb + s2

ab

s2
AB

⇒ âconv A =
s2
ab

s2
AB

1

saj
, (B.98)

aconv B =
1

2sjb

s2
aj + s2

ab

s2
AB

⇒ âconv B =
s2
ab

s2
AB

1

sjb
. (B.99)

Note that the overestimate of the soft eikonal term is simultaneously an overestimate of the
collinear singularities for quarks, so the extra collinear trial functions are only needed for the
additional (1/x-enhanced) terms that appear in initial-state g → gg branchings due to the missing
sector for “emission into the initial state”.

B.8 PDF Ratios
We define the trial PDF ratio:

R̂f =
fa(xA, Q

2
A)fb(xB, Q

2
B)

fA(xA, Q2
A)fB(xB, Q2

B)
(B.100)

for the PDF ratio evaluated at the pre-branching x and Q2 values (with Q2 sliding to be the
starting scale for the current trial). Note that this is unity for gluon emissions (when a = A and
b = B) and reduces to a single ratio when either a = A or b = B. Technically, even when this
is unity, a number different from one may be coded in the corresponding method, as a kind of
hardcoded headroom factor that can compensate for (small) PDF ratio overestimate excesses, so
strictly speaking we define:

R̂f = k
fa(xA, Q

2
A)fb(xB, Q

2
B)

fA(xA, Q2
A)fB(xB, Q2

B)
, (B.101)
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with k a constant of order unity which can be chosen differently for different trials.
In many cases, the PDFs fall off at least as 1/x towards higher x, so that the physical PDF

ratio can be overestimated by

Rf ≡
fa(xa, Q

2
a)fb(xb, Q

2
b)

fA(xA, Q2
A)fB(xB, Q2

B)
≤ xAxB
xaxB

R̂f =
sAB
sab

R̂f (B.102)

Thus, in most trial integrals below, the above substitution, Rf → (sAB/sab)R̂f is made, and the
accept ratio will then contain a factor

P accept
PDF =

sab
sAB

Rf

R̂f

≡ Rxf

R̂f

. (B.103)

For some trial generators, however, we either do not wish to make this overestimate (e.g.,
valence quark distributions) or have not managed to find a simple enough phase-space parametri-
sation to work with, so that we instead have to use the larger overestimate

Rf ≤ R̂f . (B.104)

When this is the case, we modify the trial-function method in the code to return (sab/sAB)â so
that the code can still use the above accept ratio without having to worry about which type
of overestimate was used to generate the trial. (The two fators sab/sAB then cancel in the
antenna×PDF trial ratio.) Note that this approach remains valid when mixing / combining trial
generators that use different PDF overestimates.

B.9 Integration Kernels
Using the default xf ≤ const overestimate, the overestimate of the evolution integral is

Âxf (Q
2
E F, Q

2
E new) =

∫ Q2
E F

Q2
E new

α̂sC
4π

s2
AB

s3
ab

â R̂f |J | dQ2
Edζ

dφ
2π

. (B.105)

When using the number-density overestimate, we have instead

Âf (Q
2
E F, Q

2
E new) =

∫ Q2
E F

Q2
E new

α̂sC
4π

sAB
s2
ab

â R̂f |J | dQ2
Edζ

dφ
2π

. (B.106)

The integration kernels for the Q2
E integration are, for xf overestimates:

1. Soft with Q2
⊥ : none.

2. A gluon collinear with Q2
⊥ and ζ3 (similar B gluon collinear with ζ2):

dÂcoll A(Q2
⊥) =

α̂sC
4π

s2
AB

s3
ab

2
s2
ab

s2
AB

1

saj
s2
ab

1

sjb

1

1 + ζ3

R̂f dQ2
⊥dζ3

=
α̂sC
2π

R̂f
dQ2
⊥

Q2
⊥

dζ3

1 + ζ3

(B.107)
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3. A gluon splitting

(a) with Q2
⊥ : none.

(b) with Q2
A and ζ4 (similar B gluon splitting with Q2

B and ζ4):

dÂsplit A(Q2
A) =

α̂sC
4π

R̂f
dQ2

A

Q2
A

dζ4

ζ2
4

(B.108)

4. A conversion (note this overestimate would only be appropriate for converesion back to
sea quarks; valence quarks cannot be assumed to fall like 1/x).

(a) with Q2
⊥ and ζ3 (similar B conversion with ζ2):

dÂconv A(Q2
⊥) =

α̂sC
4π

R̂f
dQ2
⊥

Q2
⊥

dζ3

1 + ζ3

(B.109)

(b) with Q2
A and ζ4 (similar B conversion with Q2

B and ζ4):

dÂconv A(Q2
A) =

α̂sC
4π

R̂f
dQ2

A

Q2
A

dζ4

ζ4

(B.110)

When using number-density overestimates instead of xf ones, the following integration kernels
can be used:

1. Soft with Q2
⊥ and ζ1:

dÂsoft(Q
2
⊥) =

α̂sC
4π

sAB
s2
ab

1

sAB

2s2
ab

sajsjb
sab

1

ζ1(1− ζ1)
R̂f dQ2

⊥dζ1

=
α̂sC
2π

R̂f
dQ2
⊥

Q2
⊥

dζ1

ζ1(1− ζ1)
(B.111)

2. A gluon collinear with Q2
⊥: none.

3. A gluon splitting

(a) with Q2
⊥ and ζ3 (similar B gluon splitting with ζ2):

dÂsplit A(Q2
⊥) =

α̂sC
4π

sAB
s2
ab

sab
sAB

1

saj
s2
ab

1

sjb

1

1 + ζ3

R̂f dQ2
⊥dζ3

=
α̂sC
4π

R̂f
dQ2
⊥

Q2
⊥

dζ3

1 + ζ3

(B.112)
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(b) with Q2
A and ζ4 (similar B gluon splitting with Q2

B and ζ4):

dÂsplit A(Q2
A) =

α̂sC
4π

sAB
s2
ab

sab
sAB

1

saj
sAB R̂f dQ2

Adζ4

=
α̂sC
4π

R̂f
sAB
sab

dQ2
A

Q2
A

dζ4

(
xaxb
xAxB

1

ζ4

)

=
α̂sC
4π

R̂f
dQ2

A

Q2
A

dζ4

ζ4

(B.113)

4. A conversion (note: these overestimates may be appropriate for conversion back to valence
quarks — although there is no guarantee that even their number density will be a falling
function of x— or for the sum of sea + valence (which typically does fall with x), however
note that no expression forQ2

⊥ evolution is yet available for this type of PDF overestimate):

(a) with Q2
⊥: none.

(b) with Q2
A and ζ4 (similar B conversion with Q2

B and ζ4):

dÂconv A(Q2
A) =

α̂sC
4π

sAB
s2
ab

s2
ab

s2
AB

1

saj
sAB R̂f dQ2

Adζ4

=
α̂sC
4π

R̂f
dQ2

A

Q2
A

dζ4

=
α̂sC
4π

R̂f
dQ2

A

Q2
A

dζ4 (B.114)

B.10 Zeta Integrals and Generation of Trial Zeta
The corresponding trial ζ integrals are:

Iζ1 =

∫ ζb

ζa

dζ1
1

ζ1(1− ζ1)
= ln

(
ζ1

1− ζ1

)∣∣∣∣ζb
ζa

= ln

(
ζb(1− ζa)
ζa(1− ζb)

)
, (B.115)

Iζ2/3 =

∫ ζb

ζa

dζ2/3
1

1 + ζ2/3

= ln(1 + ζ2/3)
∣∣ζb
ζa

= ln

(
1 + ζb
1 + ζa

)
, (B.116)

Iζ−a4
=

∫ ζb

ζa

dζ4ζ
−a
4 =


ζ−1
a − ζ−1

b for a = 2

ln ζb
ζa

for a = 1

ζb − ζa for a = 0

, (B.117)

using a to parametrise the power of 1/ζ4 that appears in the various trial intergals.
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The trial value for ζ is found by inverting the equation

Rζ =
Iζ(ζmin, ζ)

Iζ(ζmin, ζmax)
, (B.118)

the solutions are

ζ1 =

[
1 +

1− ζmin

ζmin

(
ζmin(1− ζmax)

ζmax(1− ζmin)

)Rζ1]−1

, (B.119)

ζ2/3 = (1 + ζmin)

(
1 + ζmax

1 + ζmin

)Rζ2/3
− 1 , (B.120)

ζ4 =


ζmaxζmin

ζmax+R(ζmin−ζmax)
for a = 2

ζmin

(
ζmax
ζmin

)R
for a = 1

ζmin +R(ζmax − ζmin) for a = 0

. (B.121)

B.11 Generation of Trial Evolution Scale
The integral over the evolution is scale is∫ Q2

E F

Q2
E new

dQ2
E

Q2
E

= lnQ2
E

∣∣Q2
E F

Q2
E new

= ln
Q2
E F

Q2
E new

(B.122)

The next trial scale is found by solving the equation

∆̂(Q2
E, Q

2
E new) = R (B.123)

for Q2
E new.

For constant trial α̂s, the solutions are (using α = 1 to denote the xf ≤ const overestimate
forms and α = 0 for the f ≤ const ones, and R̂xαf to emphasize that the corresponding accept
probability should be Rxαf/R̂f ):

1. Soft with Q2
⊥ and ζ1:

R = exp

(
− α̂sC

2π
Iζ1R̂f ln

(
Q2
⊥

Q2
⊥new

))
⇔ Q2

⊥new = Q2
⊥R

2π

α̂sC
1

Iζ1R̂f (B.124)

2. A gluon collinear with Q2
⊥ and ζ3 (similar B gluon collinear with ζ2):

R = exp

(
− α̂sC

2π
Iζ2/3R̂xf ln

(
Q2
⊥

Q2
⊥new

))
⇔ Q2

⊥new = Q2
⊥R

2π

α̂sC
1

Iζ2/3R̂xf (B.125)

38



3. A gluon splitting

(a) with Q2
⊥ and ζ3 (similar B gluon splitting with ζ2):

R = exp

(
− α̂sC

4π
Iζ2/3R̂f ln

(
Q2
⊥

Q2
⊥new

))
⇔ Q2

⊥new = Q2
⊥R

4π

α̂sC
1

Iζ1R̂f (B.126)

(b) with Q2
A and ζ4 (similar B gluon splitting with Q2

B and ζ4):

R = exp

(
− α̂sC

4π
Iζ4 1R̂xαf ln

(
Q2
A

Q2
Anew

))
⇔ Q2

Anew = Q2
AR

4π

α̂sC
1

Iζ4 1R̂xαf

(B.127)

4. A conversion

(a) with Q2
⊥ and ζ3 (similar B conversion with ζ2):

R = exp

(
− α̂sC

4π
Iζ2/3R̂xf ln

(
Q2
⊥

Q2
⊥new

))
⇔ Q2

⊥new = Q2
⊥R

4π

α̂sC
1

Iζ2/3R̂xf

(B.128)

(b) with Q2
A and ζ4 (similar B conversion with Q2

B and ζ4):

R = exp

(
− α̂sC

4π
Iζ4 2R̂xαf ln

(
Q2
A

Q2
Anew

))
⇔ Q2

Anew = Q2
AR

4π

α̂sC
1

Iζ4 2R̂xαf

(B.129)

Running of the Coupling: We use

αs(Q
2
E) =

1

b0 ln
(
k2
RQ

2
E

Λ2

) (B.130)

to write the evolution kernels as

dÂ = Com
dQ2

E

Q2
E ln

(
k2
RQ

2
E

Λ2

) ⇔ Â = Com ln

 ln
(
k2
RQ

2
E

Λ2

)
ln
(
k2
RQ

2
E new

Λ2

)
 . (B.131)

The solutions for the next trial scale Q2
E new are therefore

R = exp

−Com ln

 ln
(
k2
RQ

2
E

Λ2

)
ln
(
k2
RQ

2
E new

Λ2

)
 ⇔ Q2

E new =
Λ2

k2
R

(
k2
RQ

2
E

Λ2

)R1/Com

. (B.132)
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To include two-loop running we use one-loop running as above and veto with

α
(2)
s (Q2

E,Λ
(2)
QCD)

α
(1)
s (Q2

E,Λ
(2)
QCD)

(B.133)

B.12 Inverse Transforms
The inversions are for Q2

⊥ and ζ1

sjb =
Q2
⊥
ζ1

(B.134)

saj =
Q2
⊥ + ζ1sAB
1− ζ1

(B.135)

and for Q2
⊥ and ζ2

saj = ζ2sAB (B.136)

sjb =
Q2
⊥(1 + ζ2)

ζ2 −Q2
⊥/sAB

(B.137)

and for Q2
⊥ and ζ3

sjb = ζ3sAB (B.138)

saj =
Q2
⊥(1 + ζ3)

ζ3 −Q2
⊥/sAB

, (B.139)

and for Q2
A and ζ4

saj = Q2
A (B.140)

sjb = sAB(ζ4 − 1)−Q2
A , (B.141)

and for Q2
B and ζ4

sjb = Q2
B (B.142)

saj = sAB(ζ4 − 1)−Q2
B . (B.143)

C Initial–Final Evolution Equations

C.1 Notation and Kinematic Relations
We denote the pre- and post-branching partons by AK → ajk, respectively. Conservation of
energy and momentum implies pa+pK = pA+pj+pk or equivalently pa−pj−pk = pA−pK . For
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general masses, with the notation sij ≡ 2pi · pj , the relation between the pre-and post-branching
invariants is thus

sAK −m2
A −m2

K = saj + sak − sjk −m2
a −m2

j −m2
k . (C.1)

If all partons are massless, or if parton j is a gluon (gluon emission, such that ma = mA,
mk = mK , and mj = 0), the relation simplifies to

sAK = saj + sak − sjk . (C.2)

For gluonK splitting to massive quarks j and k, the relation for arbitraryma = mA andmj = mk

is
sAK = saj + sak − sjk − 2m2

j . (C.3)

For a gluon A backwards-evolving to a quark a (gluon conversion), we have (irrespective of the
recoiler mass mK = mk),

sAK = saj + sak − sjk −m2
a −m2

j , (C.4)

where we leave the possibility open of defining the new incoming quark to have a virtuality
different from that of the (on-shell) final-state one. For a quark A backwards-evolving to a gluon
a (quark conversion), we have (irrespective of the recoiler mass mK = mk),

sAK −m2
A = saj + sak − sjk −m2

j . (C.5)

which for the nominal case of mA = mj reduces to the formula for the fully massless case given
above.

For dimensionless equivalents, we normalise by the largest invariant, 2pa · (pj + pk) = saj +
sak, hence

yaj =
saj

saj + sak
, (C.6)

yjk =
sjk

saj + sak
, (C.7)

yak =
sak

saj + sak
, (C.8)

where, for massless partons, the denominators can also be written saj + sak = sAK + sjk and the
dimensionless momentum-conservation relation implies

yAK = 1− yjk , (C.9)

yak = 1− yaj , (C.10)

yaj + yak = yAK + yjk = 1 . (C.11)
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C.2 Crossing Relations
Compared to the FF case, crossing symmetry for the case when recoiling parton i is crossed to
be identified with a, implies

yij →
−saj
−sAK

≡ yaj
yAK

(C.12)

yjk →
sjk
−sAK

≡ −yjk
yAK

(C.13)

yik →
−sak
−sAK

≡ yak
yAK

. (C.14)

Crossings for which parton k is identifed with a and parton i becomes parton k (e.g., for the
GQemitIF antenna function) have:

yij →
sjk
−sAK

≡ −yjk
yAK

(C.15)

yjk →
−saj
−sAK

≡ yaj
yAK

(C.16)

yik →
−sak
−sAK

≡ yak
yAK

. (C.17)

Note also that outgoing particles are mapped to incoming particles with the opposite helici-
ties, so that, e.g., the IF antenna function for (q̄+

A q̄
+
K → q̄+

a g
+
j q̄

+
k ) is obtained from the FF one for

(q−I q̄
+
K → q−i g

+
j q̄

+
k ).

Finally, as for the case of the II functions, note that the initial-state parts of VINCIA’s antenna
functions are ’sectorised’ since there is no sector for ’emission into the initial state’. The initial-
state functions with gluon parents are therefore mostly not simple crossings of the corresponding
final-state ones. The IF case is a hybrid, with the initial-state legs being sectorised, while the
final-state legs are global.

C.3 Antenna Functions
Note: the initial-state collinear limits can be examined by using z = xi = xA/xa → (1− yjk) =
yAK . The final-state collinear limits can be examined using z = xk = yak/yAK → 1−yaj = yak.
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C.3.1 QQemitIF

The helicity-averaged antenna function is:

a(qAqK → qagjqk) =
1

sAK

[
(1− yaj)2 + (1− yjk)2

yajyjk

−2µ2
a

y2
aj

(
(1− yjk)

(
1− yaj

2

)
− yaj

2
(1− yaj)

)

−2µ2
k

y2
jk

(
1− yjk

4
(2− yjk)

(
2 +

y2
aj

1− yaj

))

+
1

2
(2− yaj)(2− yjk)

]
. (C.18)
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The individual helicity contributions are:

a(++→ + + +) =
1

sAK

[
1

yajyjk
− µ2

a

y2
aj

− µ2
k

(1− yaj)y2
jk

]
, (C.19)

a(++→ +−+) =
1

sAK

[
(1− yaj)2 + [(1− yjk)2 − 1](1− yaj)2

yajyjk

−µ
2
a(1− yjk − yaj)2

y2
aj

− µ2
k(1− yaj)(1− yjk)2

y2
jk

]
, (C.20)

a(++→ −−+) =
1

sAK

[
µ2
ay

2
jk

y2
aj

]
, (C.21)

a(++→ + +−) =
1

sAK

[
µ2
ky

2
aj

(1− yaj)y2
jk

]
, (C.22)

a(+− → + +−) =
1

sAK

[
(1− yaj)2

yajyjk
− µ2

a(1− yaj)
y2
aj

− µ2
k(1− yaj)
y2
jk

]
, (C.23)

a(+− → +−−) =
1

sAK

[
(1− yjk)2

yajyjk
− µ2

a(1− yjk)2

y2
aj

− µ2
k(1− yjk)2

y2
jk(1− yaj)

]
, (C.24)

a(+− → −−−) =
1

sAK

[
µ2
ay

2
jk

y2
aj

]
, (C.25)

a(+− → +−+) =
1

sAK

[
µ2
ky

2
aj

y2
jk(1− yaj)

]
. (C.26)

Note 1: the sum of the ++ antenna functions has the same singularities as the sum of the +- ones,
thus the same singular terms are obtained when summing over the helicity of the emitted gluon,
irrespective of parent helicities.

Note 2: the direct crossing of the second (+-+) antenna has a zero across the diagonal of the
IF phase space, corresponding to points with sak = sjk or equivalently sAK = saj . The former
condition is satisfied when (pa − pj) · pk → 0. Not having come up with a good physical reason
why that antenna function should go to zero there, we have chosen to add nonsingular terms as
shown above.

Note 3: The ++ → + − +, +− → + + − and +− → + − − antennae have all had non-
singular pieces proportional to the mass terms added to guarantee positive definiteness over the
full phase space for any choices of masses.
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C.3.2 QGemitIF

The helicity-averaged antenna function is:

a(qAgK → qagjgk) =
1

sAK

[
(1− yaj)3 + (1− yjk)2

yajyjk
+ (1− α)

1− 2yaj
yjk

− 2µ2
a

y2
aj

(
(1− yjk)−

yaj
2

[
(1− yaj)− (2− yjk)2

])

+
3

2
+ yaj −

yjk
2
− y2

aj

2

]
(C.27)

The individual helicity contributions are:

a(++→ + + +) =
1

sAK

[
1

yajyjk
+ (1− α)

1− 2yaj
yjk

− µ2
a

y2
aj

]
, (C.28)

a(++→ +−+) =
1

sAK

[
(1− yaj)3 + (1− yjk)2 − 1

yajyjk
− µ2

a(1− yjk − yaj)2(1− yaj)
y2
aj

+ 3− y2
aj

]
(C.29)

a(++→ −−+) =
1

sAK

[
µ2
ay

2
jk

y2
aj

]
(C.30)

a(+− → + +−) =
1

sAK

[
(1− yaj)3

yajyjk
− µ2

a(1− yaj)2

y2
aj

]
, (C.31)

a(+− → +−−) =
1

sAK

[
(1− yjk)2

yajyjk
+ (1− α)

1− 2yaj
yjk

− µ2
a(1− yjk)2

y2
aj

+ 2yaj − yjk
]

a(+− → −−−) =
1

sAK

[
µ2
ay

2
jk

y2
aj

]
(C.32)

Note that the sum of the ++ antenna functions has the same singularities as the sum of the +-
ones, thus the same singular terms are obtained when summing over the helicity of the emitted
gluon, irrespective of parent helicities.

Note 3: the nonsingular terms are to ensure positive-definite functions which do not vanish
at the arbitrary line across the diagonal of the phase space while still vanishing for hard-collinear
helicity flips.

Note 4: The ++ → + − + and +− → + + − antennae have had non-singular pieces
proportional to the mass terms added to guarantee positive definiteness over the full phase space
for any choices of masses.
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C.3.3 GQemitIF

Note: the 1/(yaj(1 − yjk)) denominators in the “sector terms” on the initial-state side (neces-
sary to ensure that the full initial-state gluon-collinear limits are reproduced since there is no
global antenna function for emission into the initial state) could in principle equally well be
1/(yaj(1 − yjk + yaj)) which would slightly dampen their numerical values outside the limit,
without modifying the limit itself.

The helicity-averaged antenna function is:

a(gAqK → gagjqk) =
1

sAK

[
(1− yjk)3 + (1− yaj)2

yajyjk
+

1 + y3
jk

yaj(1− yjk)

−2µ2
k

y2
jk

(
1− yjk

4
(3− 3y2

jk + y3
jk)

(
2 +

y2
aj

1− yaj

))
1

2
(2− yaj)(3− yjk + y2

jk)

]
. (C.33)

Since the gluon is in the initial state, the individual helicity contributions are crossings of
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corresponding sector FF functions, up to non-singular terms.

a(++→ + + +) =
1

sAK

[
1

yajyjk
+

1

yaj(1− yjk)
− µ2

k

y2
jk(1− yaj)

]
, (C.34)

a(++→ +−+) =
1

sAK

[
(1− yaj)2 + [(1− yjk)3 − 1](1− yaj)2

yajyjk

−µ
2
k(1− yaj)(1− yjk)3

y2
jk

]
, (C.35)

a(++→ −−+) =
1

sAK

y3
jk

yaj(1− yjk)
, (C.36)

a(++→ + +−) =
1

sAK

[
µ2
ky

2
aj

y2
jk(1− yaj)

]
, (C.37)

a(+− → + +−) =
1

sAK

[
(1− yaj)2

yajyjk
+

1

yaj(1− yjk)
− µ2

k(1− yaj)
y2
jk

]
, (C.38)

a(+− → +−−) =
1

sAK

[
(1− yjk)3

yajyjk
− µ2

k(1− yjk)3

y2
jk(1− yaj)

]
, (C.39)

a(+− → −−−) = a(++→ −−+) , (C.40)

a(+− → +−+) = a(++→ + +−) . (C.41)

Note: the nonsingular terms for the helicity-flip antenna are chosen such that the function still
goes to zero in the hard-collinear limits but allows it to be non-zero in the hard part of phase
space.

C.3.4 GGemitIF

The GGemitIF functions are essentially hybrids between sector antenna functions for the initial-
state singularities and global ones for the final-state legs.

Note: similarly to the GQemitIF functions, the 1/(yaj(1− yjk)) denominators in the “sector
terms” on the initial-state side (necessary to ensure that the full initial-state gluon-collinear limits
are reproduced since there is no global antenna function for emission into the initial state) could
in principle equally well be 1/(yaj(1− yjk + yaj)) which would slightly dampen their numerical
values outside the limit, without modifying the limit itself.
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The helicity-averaged antenna function is:

a(gAgK → gagjqk) = (C.42)

1

sAK

[
(1− yaj)3 + (1− yjk)3

yajyjk
+

1 + y3
jk

yaj(1− yjk)
+ (1− α)

1− 2yaj
yjk

+ 3− 2yjk

]
.

The helicity contributions are:

a(++→ + + +) =
1

sAK

[
1

yajyjk
+ (1− α)

1− 2yaj
yjk

+
1

yaj(1− yjk)

]
, (C.43)

a(++→ +−+) =
1

sAK

[
(1− yaj)3 + (1− yjk)3 − 1

yajyjk
+ 6− 3yaj − 3yjk + yajyjk

]
,(C.44)

a(+− → + +−) =
1

sAK

[
(1− yaj)3

yajyjk
+

1

yaj(1− yjk)

]
, (C.45)

a(+− → +−−) =
1

sAK

[
(1− yjk)3

yajyjk
+ (1− α)

1− 2yaj
yjk

+ 3yaj − yjk − yajyjk
]
.(C.46)

Note: the nonsingular terms for the helicity-flip antenna are chosen such that it remains positive-
definite over the phase space with p2

⊥ < sAK and still goes to zero in the hard-collinear limits.
Note 2: the last function includes some quadratic terms to remain positive definite.
The two additional antennae, with helicity flips on the incoming gluon leg (i.e., with parton

j inheriting the a helicity, rather than A) are the same as for the GQemitIF case:

a(++→ −−+) =
1

sAK

y3
jk

yaj(1− yjk)
, (C.47)

a(+− → −−−) = a(++→ −−+) . (C.48)

C.3.5 XGsplitIF

The XGsplitIF functions are essentially identical to the final-state gluon-splitting antennae, the
only difference being that the recoiler is now an initial-state parton. The helicity average (for
unpolarised partons, including an optional correction term for splitting to massive quarks) is:

a(XAgK → Xaq̄jqk) =
1

2m2
jk

[
y2
ak + y2

aj +
2m2

j

m2
jk

]
. (C.49)
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The helicity contributions are:

a(X+→ X −+) =
1

2m2
jk

[
y2
ak −

m2
jyak

m2
jk(1− yak)

]
, (C.50)

a(X+→ X +−) =
1

2m2
jk

[
y2
aj −

m2
jyaj

m2
jk(1− yaj)

]
, (C.51)

a(X+→ X + +) =
m2
j

2m4
jk

[
yaj

(1− yaj)
+

yak
(1− yak)

+ 2

]
. (C.52)

Note, in principle the exact crossing corresponds to performing the substitution m2
jk →

m2
jky

2
AK in the denominators above, which is neglected since the yjk → 0 limit corresponds

to yAK → 1.

C.3.6 QXsplitIF

The QXsplitIF functions are essentially identical to the QXsplitII functions, the only difference
being that the recoiler is now a final-state parton.

The helicity-averaged antenna function is:

a(qAXK → gaq̄jXk) =
1

sAK

[
y2
AK + (1− yAK)2

yaj
+

2µ2
jyAK

y2
aj

]
. (C.53)

The individual helicity contributions are:

a(+X → +−X) =
1

sAK

[
y2
AK

yaj
− µ2

jy
2
AK

y2
aj(1− yAK)

]
, (C.54)

a(+X → −−X) =
1

sAK

[
(1− yAK)2

yaj
− µ2

j(1− yAK)

y2
aj

]
, (C.55)

a(+X → + +X) =
1

sAK

[
µ2
j

y2
aj(1− yAK)

]
, (C.56)

a(−X → −+X) = a(+X → +−X) , (C.57)

a(−X → + +X) = a(+X → −−X) , (C.58)

a(−X → −−X) = a(+X → + +X) . (C.59)

C.3.7 GXconvIF

The GXconvIF functions are essentially identical to the GXconvII functions, the only difference
being that the recoiler is now a final-state parton.
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The helicity-averaged antenna function is:

a(gAXK → qaqjXk) =
1

2sAK

[
1 + (1− yAK)2

yAK(yaj − 2µ2
j)
− 2µ2

jyAK

(yaj − 2µ2
j)

2

]
. (C.60)

The individual helicity contributions are:

a(+X → + +X) =
1

2sAK

[
1

yAK(yaj − 2µ2
j)
− µ2

jyAK

(yaj − 2µ2
j)

2(1− yAK)

]
, (C.61)

a(+X → −−X) =
1

2sAK

[
(1− yAK)2

yAK(yaj − 2µ2
j)
− µ2

jyAK(1− yAK)

(yaj − 2µj)2

]
, (C.62)

a(+X → +−X) =
1

2sAK

[
µ2
j

(yaj − 2µ2
j)

2

y3
AK

1− yAK

]
, (C.63)

a(−X → −−X) = a(+X → + +X) , (C.64)

a(−X → + +X) = a(+X → −−X) , (C.65)

a(−X → −+X) = a(+X → +−X) . (C.66)

C.4 Evolution Variables
The evolution variables we use are

Q2
⊥ =

sajsjk
sAK + sjk

, (C.67)

Q2
A = saj , (C.68)

Q2
K = sjk . (C.69)

Phase Space Boundaries: With sAK + sjk = saj + sak and sjk = −sAK + saK = (xa −
xA)
√
spK−, the phase space boundaries are 0 ≤ sjk ≤ 1−xA

xA
sAK and 0 ≤ saj ≤ sAK + sjk. The

maxima of the evolution variables are

Q2
⊥ max =

1− xA
xA

sAK , (C.70)

Q2
A max = sAK/xA , (C.71)

Q2
K max =

1− xA
xA

sAK . (C.72)
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C.5 Zeta Definitions
The choices are

ζ1 =
sjk + sAK
sAK

=
xa
xA

, (C.73)

ζ2 =
saj

sAK + sjk
, (C.74)

(C.75)

To accomodate for the different phase space limits of the global and local maps, the phase space
boundaries of ζ are defined in terms of sjk+, which is given by

sjk+ =


(
xa+

xA
− 1
)
sAK Local map(

xa+

xA

sAB
sAB−sBK − 1)

)
sAK Global map

(C.76)

where xa+ is the remaining available partonic momentum fraction. The integration boundaries
for the ζ variables are

ζ1−(Q2
⊥) =

Q2
⊥ + sAK
sAK

ζ1 +(Q2
⊥) =

sAK + sjk+

sAK
, (C.77)

ζ2−(Q2
⊥) =

Q2
⊥

sjk+

ζ2 +(Q2
⊥) = 1 , (C.78)

ζ1−(Q2
A) = max

(
1,
Q2
A

sAK

)
ζ1 +(Q2

A) =
sAK + sjk+

sAK
, (C.79)

ζ2−(Q2
K) = 0 ζ2 +(Q2

K) = 1 . (C.80)

C.6 Jacobians
The Jacobians for the transformation from the phase-space variables, (saj, sjk), to the shower
variables, (QE, ζ), are

|J(Q2
⊥, ζ1)| = (sAK + sjk)sAK

sjk
, (C.81)

|J(Q2
⊥, ζ2)| = (sAK + sjk)

2

saj
, (C.82)

|J(Q2
A, ζ1)| = sAK , (C.83)

|J(Q2
K , ζ2)| = sAK + sjk . (C.84)
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C.7 Trial Functions
The following trial functions are used (written to emphasise the overall factor (sAK+sjk)/sAK =
xa/xA):

asoft =
1

sAK

2

yajyjk
⇒ âsoft =

2(sAK + sjk)

sajsjk

(sAK + sjk)

sAK
, (C.85)

ag coll A =
2

sAK

1

yaj(1− yjk)
⇒ âg coll A =

2(sAK + sjk)

sajsAK

(sAK + sjk)

sAK
, (C.86)

aconv A =
1

2

1

saj

s2
ak + s2

jk

s2
AK

⇒ âconv A =
(sAK + sjk)

sajsAK

(sAK + sjk)

sAK
, (C.87)

asplit A =
1

sAK

sak
saj
− 2

sAK

sjk
saj

sAK − saj
sAK + sjk

⇒ âsplit A =
2

saj

(sAK + sjk)

sAK
, (C.88)

asplit K =
1

2

1

sjk

s2
ak + s2

aj

s2
AK

⇒ âsplit K =
(sAK + sjk)

2sjksAK

(sAK + sjk)

sAK
. (C.89)

C.8 Integration Kernels
The overestimate of the evolution integral is, for (xαf) ≤ const PDF overestimates

Â(Q2
E F, Q

2
E new) =

∫ Q2
E F

Q2
E new

α̂sC
4π

sAK
(sAK + sjk)2

â

(
sAK

sAK + sjk

)α
R̂f |J | dQ2

Edζ
dφ
2π

. (C.90)

The integration kernels for the Q2
E integration are

1. Soft with Q2
⊥ and ζ1:

dÂsoft(Q
2
⊥) =

α̂sC
2π

R̂f
dQ2
⊥

Q2
⊥

dζ1

ζα1 (ζ1 − 1)
(C.91)

2. A gluon collinear with Q2
⊥ and ζ1:

dÂg coll A(Q2
⊥) =

α̂sC
2π

R̂f
dQ2
⊥

Q2
⊥

dζ1

ζα1
(C.92)

3. A conversion

(a) with Q2
⊥ and ζ1:

dÂconv A(Q2
⊥) =

α̂sC
4π

R̂f
dQ2
⊥

Q2
⊥

dζ1

ζα1
(C.93)

52



(b) with Q2
A and ζ1:

dÂconv A(Q2
A) =

α̂sC
4π

R̂f
dQ2

A

Q2
A

dζ1

ζα1
(C.94)

4. A gluon splitting

(a) with Q2
⊥ and ζ1:

dÂsplit A(Q2
⊥) =

α̂sC
2π

R̂f
dQ2
⊥

Q2
⊥

dζ1

ζ1+α
1

(C.95)

(b) with Q2
A and ζ1:

dÂsplit A(Q2
A) =

α̂sC
2π

R̂f
dQ2

A

Q2
A

dζ1

ζ1+α
1

(C.96)

5. K gluon splitting

(a) with Q2
⊥ and ζ2, with α = 1:

dÂsplit K(Q2
⊥) =

α̂sC
8π

R̂f
dQ2
⊥

Q2
⊥

dζ2 (C.97)

(b) with Q2
K and ζ2, with α = 1:

dÂsplit K(Q2
K) =

α̂sC
8π

R̂f
dQ2

K

Q2
K

dζ2 (C.98)
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C.9 Zeta Integrals and Generation of Trial Zeta
We have five different ζ integrals to solve,

Iζ, quad =

∫ ζb

ζa

ζdζ =
ζ2
b − ζ2

a

2
, (C.99)

Iζ, lin =

∫ ζb

ζa

dζ = ζb − ζa , (C.100)

Iζ, log =

∫ ζb

ζa

dζ
ζ

= ln
ζb
ζa
, (C.101)

Iζ, inv =

∫ ζb

ζa

dζ
ζ2

=
−1

ζ

∣∣∣∣ζb
ζa

= ζ−1
a − ζ−1

b , (C.102)

Iζ, log2 =

∫ ζb

ζa

dζ
ζ − 1

= ln
ζb − 1

ζa − 1
, (C.103)

Iζ, log3 =

∫ ζb

ζa

dζ
ζ(ζ − 1)

= ln
(ζb − 1)ζa
(ζa − 1)ζb

, (C.104)

(C.105)

The trial value for ζ is found by inverting the equation

Rζ =
Iζ(ζmin, ζ)

Iζ(ζmin, ζmax)
, (C.106)

the solutions are

ζquad =
√
Rζ(ζ2

min − ζ2
max) + ζ2

max , (C.107)

ζlin = Rζ(ζmin − ζmax) + ζmax , (C.108)

ζlog = ζmax

(
ζmin

ζmax

)Rζ
, (C.109)

ζinv =
[
Rζ(ζ

−1
min − ζ−1

max) + ζ−1
max

]−1
, (C.110)

ζlog2 = 1 + (ζmin − 1)

(
ζmax − 1

ζmin − 1

)R
, (C.111)

ζlog3 = ζmin

[
ζmin − (ζmin − 1)

(
ζmin

ζmin − 1

ζmax − 1

ζmax

)R]−1

. (C.112)
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C.10 Generation of Trial Evolution Scale
The integral over the evolution is scale is∫ Q2

E F

Q2
E new

dQ2
E

Q2
E

= lnQ2
E

∣∣Q2
E F

Q2
E new

= ln
Q2
E F

Q2
E new

. (C.113)

The next trial scale is found by solving the equation

∆̂(Q2
E, Q

2
E new) = R (C.114)

for Q2
E new. For constant trial α̂s, the solutions are

1. Soft with Q2
⊥ and ζ1, for α = 1:

Q2
⊥new = Q2

⊥R
2π

α̂sC
1

Iζ,log 3R̂f (C.115)

2. Soft with Q2
⊥ and ζ1, for α = 0:

Q2
⊥new = Q2

⊥R
2π

α̂sC
1

Iζ,log 2R̂f (C.116)

3. A gluon collinear with Q2
⊥ and ζ1, for α = 1:

Q2
⊥new = Q2

⊥R
2π

α̂sC
1

Iζ,logR̂f (C.117)

4. A gluon collinear with Q2
⊥ and ζ1, for α = 0:

Q2
⊥new = Q2

⊥R
2π

α̂sC
1

Iζ,linR̂f (C.118)

5. A conversion

(a) with Q2
⊥ and ζ1, for α = 1:

Q2
⊥new = Q2

⊥R
4π

α̂sC
1

Iζ,logR̂f (C.119)

(b) with Q2
⊥ and ζ1, for α = 0:

Q2
⊥new = Q2

⊥R
4π

α̂sC
1

Iζ,linR̂f (C.120)
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(c) Same expressions apply for Q2
A and ζ1.

6. A gluon splitting

(a) with Q2
⊥ and ζ1:

Q2
⊥new = Q2

⊥R
2π

α̂sC
1

Iζ1(α)R̂f (C.121)

(b) Same expression with Q2
A and ζ1.

7. K gluon splitting

(a) with Q2
⊥ and ζ2 with α = 1:

Q2
⊥new = Q2

⊥R
8π

α̂sC
1

Iζ3, linR̂f (C.122)

(b) Same expression with Q2
K and ζ2 with α = 1.

Running of the Coupling: See initial-initial.

C.11 Inverse Transforms
The inversions are for Q2

⊥ and ζ1

sjk = sAK(ζ1 − 1) (C.123)

saj =
Q2
⊥ζ1

ζ1 − 1
(C.124)

and for Q2
A and ζ1

saj =
Q2
A

NsI
(C.125)

sjk = (ζ1 − 1)sAK (C.126)

and for Q2
⊥ and ζ2

sjk =
Q2
⊥
ζ2

(C.127)

saj = sAKζ2 +Q2
⊥ (C.128)

and for Q2
K and ζ2

sjk = Q2
K (C.129)

saj = ζ2

(
sAK +Q2

K

)
(C.130)
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D Accept Probabilities

D.1 Helicity Selection
For non maximally helicity violating (MHV) processes see [3]. MHV helicity selection can be
simplified by studying the structure of MHV amplitudes, which are discussed in Section D.7
below. MHV amplitudes all have the following form:

|MFC
n |2h = |A0(1h, . . . , nh)|2

∣∣∣∣∣∑
σ

1

〈σ(1)σ(2)〉 . . . 〈σ(n)σ(1)〉CF(σ(1) . . . σ(n))

∣∣∣∣∣
2

, (D.1)

where |MFC
n |2h refers to the full colour (FC) MHV squared amplitude with helicity configuration

label h, A0(1h, . . . , nh) is some function of the helicities, σ is the relavent set of permutations,
and CF is the colour factor. To polarise the hard process we want to calculate if:∑h

i=1 |MFC
n |2i∑

h′ |MFC
n |2h′

≥ R , (D.2)

for h the helicity-configuration we are currently checking, and the sum over h′ is a sum over all
helicity configurations, which can be expanded as:

∑
h′

|MFC
n |2h′ =

(∑
h′

|A0(1h
′
, . . . , nh

′
)|2
)∣∣∣∣∣∑

σ

1

〈σ(1)σ(2)〉 . . . 〈σ(n)σ(1)〉CF(σ(1) . . . σ(n))

∣∣∣∣∣
2

.

(D.3)
Labelling the second term as F (σ), we notice that equation (D.2) now reads:∑h

i=1 |MFC
n |2i∑

h′ |MFC
n |2h′

=

∑h
i=1 |A0(1i, . . . , ni)|2∑
h′ |A0(1h′ , . . . , nh′)|2

F (σ)

F (σ)
=

∑h
i=1 |A0(1i, . . . , ni)|2∑
h′ |A0(1h′ , . . . , nh′)|2 ≥ R , (D.4)

and we can therefore use the much simpler expressions |A0(1h, . . . , nh)|2 = |MLC
n |2h to polarise

the process. That is, since the colour information is the same for each MHV helicity configuration
we can factorise it out from the sum of matrix elements. QCD processes are non-chiral, so we
explicitly calculate only half of the factors |MLC

n |2h, since the other half are equal by parity.
We cannot do the above for 4-quark MHV amplitudes, because there is a second colour-

connection when the two quarks have the same helicity. Hence the colour-factor depends on the
helicity and cannot be factorised.

D.2 Smooth-Ordering Factor: Pimp

Note: this section is largely adapted from the discussion in [4].
In smooth ordering, the only quantity which must still be strictly ordered are the antenna

invariant masses, a condition which follows from the nested antenna phase spaces and momen-
tum conservation. Within each individual antenna, and between competing ones, the measure of
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Figure 3: The smooth-ordering factor (solid) compared to a strong-ordering Θ function (dashed).

evolution time is still provided by the ordering variable, which we therefore typically refer to as
the “evolution variable” in this context (rather than the “ordering variable”), in order to prevent
confusion with the strong-ordering case. The evolution variable can in principle still be chosen
to be any of the possibilities given above, though we shall typically use 2p⊥ for gluon emission
and mqq̄ for gluon splitting.

In terms of an arbitrary evolution variable, Q, the smooth-ordering factor is [3]

Pimp

(
Q2, Q̂2

)
=

Q̂2

Q̂2 +Q2
, (D.5)

where Q is the evolution scale associated with the current branching, and Q̂ measures the scale
of the parton configuration before branching. A comparison to the strong-ordering step function
is given in fig. 3, on a log-log scale. Since this factor is bounded by 0 ≤ Pimp ≤ 1, it can be
applied as a simple accept/reject on each trial branching.

When switched on, smooth ordering is technically achieved as follows. After each accepted
branching, the daughter antennae involved in that particular branching are allowed to restart
their evolution from a scale nominally equivalent to their respective kinematic maximum. Trial
branchings are then generated in the “unordered” part of phase space first, for those antennae
only, while all other antennae in the event are “on hold”, waiting for the scale to drop back down
to normal ordering before the global event evolution is continued. The Pimp factor is applied as
an extra multiplicative modification to the accept probability for each trial branching, in both the
ordered and unordered regions of phase space.

In the strongly-ordered region of phase-space, Q� Q̂, we may rewrite the Pimp factor as

Pimp =
1

1 + Q2

Q̂2

Q<Q̂
= 1− Q2

Q̂2
+ . . . . (D.6)

Applying this to the 2 → 3 antenna function whose leading singularity is proportional to 1/Q2,
we see that the overall correction arising from the Q2/Q̂2 and higher terms is finite and of order
1/Q̂2; a power correction. The LL singular behaviour is therefore not affected. However, at the
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multiple-emission level, the 1/Q̂2 terms do modify the subleading logarithmic structure, starting
from O(α2

s), as we shall return to below.
In the unordered region of phase-space, Q > Q̂, we rewrite the Pimp factor as

Pimp =
Q̂2

Q2

1

1 + Q̂2

Q2

Q>Q̂
=

Q̂2

Q2

(
1− Q̂2

Q2
+ . . .

)
, (D.7)

which thus effectively modifies the leading singularity of the LL 2 → 3 function from 1/Q2

to 1/Q4, removing it from the LL counting. The only effective terms ∝ 1/Q2 arise from finite
terms in the radiation functions, if any such are present, multiplied by the Pimp factor. Only a
matching to the full tree-level 2 → 4 functions would enable a precise control over these terms.
Up to any given fixed order, this can effectively be achieved by matching to tree-level matrix
elements. Matching beyond the fixed-order level is beyond the scope of the current treatment.
We thus restrict ourselves to the observation that, at the LL level, smooth ordering is equivalent
to strong ordering, with differences only appearing at the subleading level.

The effective 2 → 4 probability in the shower arises from a sum over two different 2 →
3⊗ 2→ 3 histories, each of which has the tree-level form

Â Pimp A ∝
1

Q̂2

Q̂2

Q̂2 +Q2

1

Q2
=

1

Q̂2 +Q2

1

Q2
, (D.8)

thus we may also perceive the combined effect of the modification as the addition of a mass term
in the denominator of the propagator factor of the previous splitting. In the strongly ordered
region, this correction is negligible, whereas in the unordered region, there is a large suppression
from the necessity of the propagator in the previous topology having to be very off-shell, which is
reflected by the Pimp factor. Using the expansion for the unordered region, eq. (D.7), we also see
that the effective 2 → 4 radiation function, obtained from iterated 2 → 3 splittings, is modified
as follows,

P2→4 ∝
1

Q̂2

Q̂2

Q2

1

Q2
→ 1

Q4
+O(...) , (D.9)

in the unordered region. That is, the intermediate low scale Q̂, is removed from the effective
2→ 4 function, by the application of the Pimp factor.

D.3 All-Orders Pimp Factor
The path through phase space taken by an unordered shower history is illustrated in fig. 4,
from [4]. An antenna starts showering at a scale equal to its invariant mass,

√
s, and a first

2 → 3 branching occurs at the evolution scale Q̂. This produces the overall Sudakov factor
∆2→3(

√
s, Q̂). A daughter antenna, produced by the branching, then starts showering at a scale

equal to its own invariant mass, labeled
√
s1. However, for all scales larger than Q̂, the Pimp fac-

tor suppresses the evolution in this new dipole so that no leading logs are generated. To leading
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4 ∼

∆
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s, Q̂)

√
s1

Figure 4: Illustration of scales and Sudakov factors involved in an unordered sequence of two
2 → 3 branchings, representing the smoothly ordered shower’s approximation to a hard 2 → 4
process.

approximation, the effective Sudakov factor for the combined 2 → 4 splitting is therefore given
by

∆eff
2→4 ∼ ∆2→3(

√
s, Q̂) , (D.10)

in the unordered region. Thus, we see that a dependence on the intermediate scale Q̂ still remains
in the effective Sudakov factor generated by the smooth-ordering procedure. Since Q̂ < Q in the
unordered region, the effective Sudakov suppression of these points might be “too strong”. The
smooth ordering therefore allows for phase space occupation in regions corresponding to dead
zones in a strongly ordered shower, but it does suggest that a correction to the Sudakov factor
may be desirable, in the unordered region.

A study of Z → 4 jets at one loop would be required to shed further light on this question.
In the meantime, for all unordered branchings that follow upon a gluon emission, we allow to
include a correction to the Pimp factor that removes the leading (eikonal) part of the “extra”
Sudakov suppression. We define an all-orders corrected Pimp factor as follows:

P emit
imp

(
Q2, Q̂2

)
→ αs(Q

2)

αs(Q̂2)

Pimp(Q2, Q̂2)

∆eik
2→3

(
Q2, Q̂2

) , (D.11)

with the Eikonal terms of the Sudakov integral given by [4]:

1

∆eik
2→3

(
Q2, Q̂2

) = exp

(
αs(Q

2)

2π
C [I1(ŷ)− 2I2(ŷ)− I1(y) + 2I2(y))]

)
,

where C is the colour factor of the first 2→ 3 branching (the one that produced the intermediate
scale Q̂) inside which the unordered 2→ 4 branching is occurring, and y = Q2/m2

2 (ŷ = Q̂2/m2
2)
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is the branching scale normalized to the invariant mass squared of that antenna. For evolution in
p⊥ (the default for gluon emissions), the I1 and I2 integrals are [4]:

I1(y) =
π2

6
+

1

2
ln2

 y2

2
(

1 +
√

1− y2
)
− y2

− ln2

[
1

2

(
1 +

√
1− y2

)]
− 2 Li2

[
1

2

(
1 +

√
1− y2

)]
(D.12)

I2(y) = −

ln

 y2

2
(

1 +
√

1− y2
)
− y2

+ 2
√

1− y2

 , (D.13)

with expressions for other ordering types available in [4]. We note that this factor neglects (pos-
itive) collinear-singular terms and (positive) corrections from the running of αs between Q and
Q̂, hence we expect that even this correction factor still only represents a partial compensation, at
a level equivalent to removing spurious terms of total order α3

s ln3(Q̂2/Q2) and α3
s ln2(Q̂2/Q2).

We also note that a similar factor could be applied

D.4 Gluon Splitting: The Ariadne Factor
...

D.5 Matrix-Element Corrections: Leading Colour
...

D.6 Matrix-Element Corrections: Full Colour
...

D.7 Matrix-Element Corrections: MHV amplitudes
For fast evaluation of certain types of helicity configuration VINCIA uses Maximally Helicity
Violating (MHV) amplitudes. MHV amplitudes have the advantage of being an analytical solu-
tion for n partons which is independent of Feynman diagrams. In the following we consider all
particles to be outgoing and massless.

To be in the MHV configuration all but two particles must have the same helicity. We define
our spinors as:

u±(p) =
1

2

(
1± γ5

)
u(p) , u±(p) = u(p)

1

2

(
1∓ γ5

)
, (D.14)
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together with their inner products:

u−(i)u+(j) ≡ 〈ij〉 =
√
p+
j e

iφi −
√
p+
i e

iφj , (D.15)

u+(i)u−(j) ≡ [ij] =〈ji〉∗ , (D.16)

where p+
i = p0

i + p3
i and eiφi =

p1
i+ip

2
i√

p+
i

. For more details about spinor inner products and their

properties see [5]. Note that in recent literature one often finds the convention [ij] = 〈ij〉∗, which
is different to above. Any future formulae/spinor-helicity properties borrowed from literature
should bare this in mind.

The MHV amplitudes used in VINCIA are all colour-ordered. We use a different QCD con-
vention for MHV than in the rest of VINCIA. For MHV amplitudes the QCD Casimirs become
TR = 1, CF = 8/3, and CA = 3, which affects the colour-algebra as seen in [5]. The n-gluon
MHV amplitude with negative-helicity gluons at positions i and j is given by the Parke Taylor
formula [6]:

An(i−, j−) = i
〈ij〉4

〈12〉〈23〉 . . . 〈n1〉 . (D.17)

There is an equally compact MHV formula for the process involving n − 2 gluons and a quark
anti-quark pair. If the quark and gluon i each have negative helicity, and the anti-quark and all
other gluons have positive helicity, then the amplitude is [7]:

An(q−, i−, q̄+) =
〈qi〉3〈q̄i〉

〈q̄q〉〈q1〉〈12〉 . . . 〈(n− 2)q̄〉 , (D.18)

where the numbers refer to the (colour ordered) gluons. If we exchange the helicities on the
quarks, it is sufficient to exchange the exponents in the numerator. See [7] for the four-quark,
n-gluon MHV amplitude; as well as the two-quark, two-lepton, n-gluon MHV amplitude. For
each amplitude, exchanging the helicity of each particle corresponds to exchaning 〈ij〉 → [ji].

The MHV amplitudes involving the exchange of a W boson still need testing, but have been
written into MHV.cc

When doing the heliticy-clustering, an MHV configuration will always cluster back into ei-
ther an unphysical helicity state, or into an MHV state. This allows for quick matrix-element
corrections of complex states such as the 7-gluon state. The MHV configurations also provide
the dominant contributions to a helicity-summed amplitude. It may therefore be useful to give
the user the option to include MHV corrections for very high-multiplicity states.

D.8 Matrix-Element Corrections: Different Interfering Borns
...
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Figure 5: Illustration of the intersection/nesting of pT and mD contours.

E Cutoff Boundaries

E.1 Fixed Transverse Momentum
• Consider the region defined by yijyjk ≥ y⊥. For illustration, a value of y⊥ = 0.1 was used

for the contour shown with light green shading in fig. 5.

• The (larger) invariant-mass region that completely encloses the y⊥ one is defined by yD =
min(yij, yjk) ≥ 1

2
(1−√1− 4y⊥). This is shown with light blue shading in fig. 5.

• The (smaller) invariant-mass region that is completely enclosed by the y⊥ one is defined
by yD = min(yij, yjk) ≥ √y⊥. This is shown with light yellow shading in fig. 5.

To translate this to evolution variables, with arbitrary normalization factors, use y⊥ = Q2
⊥/sIK/N⊥

and m2
D/sIK/ND.

E.2 Fixed Dipole Mass
• Consider the region defined by min(yijyjk) ≥ yD, with yD some fixed value.

• The (larger) transverse-momentum region that completely encloses the yD one is defined
by y⊥ = yijyjk ≥ y2

D. This relationship is illustrated by the light-green and light-yellow
shaded regions in fig. 5.

• The (smaller) transverse-momentum region that is completely enclosed by the yD one is
defined by y⊥ = yijyjk ≥ 1

4
(1 − (1 − 2yD)2). This relationship is illustrated by the

light-green and light-blue shaded regions in fig. 5.
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To translate this to evolution variables, with arbitrary normalization factors, use y⊥ = Q2
⊥/sIK/N⊥

and m2
D/sIK/ND.
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