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A Final-Final Evolution Equations

A.1 Evolution Variables

The evolution variables considered in VINCIA for final-final antennae are the following [1,2]:

SiiSik
QI =N, - = N yij yjemix = NLpia, (D
Mk
m% = ND min(sij, Sjk:) = ND min(yija y]k) m%K ) (2)
N (855 + sjx)?
IK
m2. =m3, 4)

with the arbitrary normalization factors NV, € [1,4] and Np € [1, 2], the invariant mass
mix = (pr+px)? = (i +p;+p)*, )
and the symbol s;; defined as the dot product
m=0
sy = 2pi-p; = (pitp)?—mi—mi "= mi. (6)

The maximum values that these evolution variables attain on the physical final-final antenna
phase-space are:

N
Qimax = TJ_miK ) (7)
N
m2Dmax - TDm?K ) (8)
E:fax = m%K ) (9)
mﬁ*max = m?K . (10)

Note on dimensionality: the dimensionless form of the evolution variable is y = Q?/m?,
with () denoting the choice of evolution variable among the above possibilities. Throughout, we
use the notation y for scaled dot products, y;; = s;;/m3,, and y' for scaled invariant masses,

r_ 2 2
Yi; = mz‘j/le'

Note for mp: the expressions below correspond to the branch with y;; < ;. and hence will
only generate branchings over half of phase space. For trial antenna functions symmetric in the
invariants (specifically the soft-eikonal and hard-finite ones, see sec. A.4), the trial generation is



done by multiplying the kernel by a factor 2 and randomly keeping or swapping the generated
invariants. For the /- and K -collinear sector terms, we use that they are mutually related by
1 <> k, and hence an [-collinear term over all of phase space can be composed from an /-
collinear one on the branch y;; < y;, combined with a /K '-collinear one with swapped invariants
on the complementary branch.

A.2 Zeta Definitions

The following choices of ( are used:

Yij
= — 11
G R (11)
G2 = Yij (12)
03 = Yjk - (13)

The final-final phase-space limits are, for @, :

2
G(Q%) = % <1 /11— NiLT%lK) = % (1£ V1 —4yijyn) (14)
G (Q1) = G(Q7) (15)
G2(Q1) = G(Q7) (16)



for mp:

1
Gi-(mp) = 3 (17
o) =1— "D 1y (18)
1+ D NDm%K ylj )
(o—(m}) = N/A | (19)
Cor(m3) = N/A (20)
(3-(mp) i Q1)
—(m — = Yij ,
3 D NDm%K y]
Gulmd) =1— "D 1y, (22)
3+ D NDmﬁK yl] )
for £*:
(+(E*?) = Special: see below (23)
for mg-«:
(o (m2;) =0, 24)
m2.
G (M) = 1= = =1~y 23)
1K

using the definition y};, = m?k /m?, in the last expression. Note that the phase-space limits
for E* coincide with the collinear limits. Integrations over any finite interval of E* over the
full allowed ¢ range would therefore yield infinities. When using E*-ordering, it is necessary to
impose a hadronization cutoff in a complementary variable, such as (), or mp. This cutoff then
defines the ¢ boundaries for the integrations.

A.3 Jacobians

The Jacobians for the transformation from the original LIPS variables, (sij, sjk), to the shower
variables, (Q?, (), are written as a product of a normalization-and-Q-dependent piece and a (-

dependent factor,
|| =Jg x Je . (26)



They are, for Q?%:

1 m?2
J 27 _ % IK ’
QL= g5 X G-
1 m?2
J 2’ - % IK ’
’ (QJ_ CQ)‘ NJ_ C2
1 m?2
J 2’ - % IK ’
’ (QJ_ C3)‘ NJ_ C3
for m2:
|J(m3, ()| = Not Used ,
|J(m3, G)| = N/A,
2 1 2
|J(mp,(3)| = N_D X Mig
for £*2:
*2 1 2
I(E2,G)| = 5 X mic
mri
J E*Q, - 8 2 ’
| ( C?)| 2@ IK
mri
J(E*2, = ——— xm?,,
‘ ( C3)| 2@ IK
for mg-«:

(27)

(28)

(29)

(30)

€1y

(32)

(33)

(34)

(35)

(36)



A.4 Trial Functions

The following trial functions are available:

1 2
Eikonal (soft) : 4y = —; (37
Mk YijYik
. 1
Constant (hard) : ap = —— (38)
Mrk
. . 1 2
I Collinear (sector) : a5 = — (39)
mig Yij (1 — Yjk)
. . 1 2
K Collinear (sector) : ax = (40)
M Yie(1 — yij)
" . 1 1 1
K Splitting (9 = ¢@) : s = —5 = ————, 41)
Myg Mk Yjk
where we emphasize that y/j,, in the last expression is defined by ¥}, = m?, /m7x.
A.5 Zeta Integrals
For a given trial antenna function, a, the definition of the ¢ integral is:
b
I = / dc Jc i 42)
Ca

where | J¢| signifies the part of the Jacobian that only has ¢ dependence (see above), and ¢, > (,
represents an arbitrary ¢ interval. This interval will in general be larger than the physically
allowed one (trials generated outside the physical phase space will be rejected by a veto). We
shall nevertheless still assume that all ¢ values are at least inside the range ¢ € [0, 1].

The integration kernels are, for () :

1

Je &E,F(inﬁ) = m ) 43)
Jear(Q3,¢s) = a _1 &) (44)
Jeak(Q1,G) = (1_1@ , (45)



for mp:

for E*:

for mg-«:

R 1
J¢ @E(m2D7C3) ==,
(3

Je &F(m%a@) =1,

1
(1—G)’

Jear(mp, G3) =

P 1
Jg aE(E 2»(1) = 25
1

. . 1
Jg CLF(E 27C1) = 5 )

Jeas(m., (o) =1

with integrals over the range (, < (, for Q) :

for mp:

for £*:

QEF@ﬁ,Q)=1H<Q(1_QJ)7

Ca(l - Cb)

]CI(Qiag?)) =1In (1 — Ca) ’

1 =G
Ik (Q1, () =In (1 : g:) )
Icg(m},¢) =In (%) ,

IgF(m%, Cs) =G —Cas

Icl(m%),@) =1In (1 — Ca) )

1—G

1 1
Icg(B* ()= — — —
CE( 7§1) 2 ij

Iep(E?,G) = G —Ca s

8

(46)

(47)

(48)

(49)

(50)

(5D

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)



for my-:

Ies(m3e, Ga) = G — Ca - (61)

A.6 Evolution Integrals

The evolution integral, for a particular choice of () and (, is defined as follows

Ao — [T O 0@ L(Q.0). 62)
Q2 mIK

with C the (trial) color factor (typically C'4 for gluon emission and 1 for gluon splitting) and Jg
the non-( dependent part of the Jacobian, see eqs. (27) — (36).

Note: for massive partons, the phase-space factor should actually be larger: m;x in the
denominator should be replaced by the Killén function [3]:

2 2 2)

2 4 4 4 2 2 2 2 2. 2
mIK — A(mIK,mI,mK - mIK+mI+mK—2(mIKmI+mIKmK+TTLImK) . (63)

For massive partons, this is taken care of during trial generation by applying an overall prefactor
representing the phase-space volume and using the same integrals as shown here below.
We label the integrand in the above equation by

C g2

dA =
A 1672s

Jo(Q, ) 1c(Q, () , (64)

which takes the following specific forms, for () :

1

dAR(Q%) = Z‘—;ClcE(Qi,Q) o (65)
dAR(Q? L %o 1 66
r(Q1) = ON, 4r Ir(Q1,6) —— w2, (66)
1
dA(Q}) = 2 C[CI(QJ_a (3) =5 (67)
i
1
dAK(QJ_) - 2 C]CK(QJ_>C2) QQ ) (68)
1
for mp:
) i 1
dAg(m%) = Z—WCQICE,I(W%7 (3) m_%) : (69)
dAp(md) = — % ! 70
F(m ) N 4 CF(mDaC?)) mIK, (70)



for E*:

for my-:

(71)

. 1
*2\ _ S *2
dAp(E™) = - CIe(E™,G) —E*Qm%K ;
dAp(E*?) = el (E*2,¢1) ! (72)
F - A 2 CF » S1 %K )
dAs(m2) = % ¢ [g(m? ! 73
s(mg.) = 1 Cles Mg, Ca) @ (73)
For a constant trial &, the evolution integrals are, for (| :
A%(QL1, Q%) = Cch In (Q“) : (74)
12
i 1 (@3 )
0 (2 2 Qs - Q%
Ap(Q11, Q1) = _2N 4 “C1 CF —m%K ) (75)
. 2
Aj (@11, Q1) = CICIK In (Q ) (76)
12
for mp:
A% (m2,,md,) = —CQI In le 77)
EI\""*D1,"""D2 CE,I mD2 ’
. 1 (m$, — m3
Ap(mby, mby) = N, 1 CLer D;,,L?K b2 (78)
for B*:
10 2 2 Qs VET — Eé&)
Agp(ET7 E3°) = — C2Lep , (79)
™ mik
j0 e ey Qs 10 (B - B3
Ap(ET, EyY) = 1. Cgler o (80)
for mg:
10 (2 Qs m?ﬂ
Ag(mgy,mg,) EC[CS In m_22 (81)
g
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For a first-order running trial &,(Q?),

1 1

6.(Q1) = bun<ﬂm)::%m(ﬁ%)’ (82)
A 1 B 1

x(mp) = %m<Riﬁ__%m(%ﬁQ’ ®)
Gs(mz.) = ! (84)

2
g* m2 )
bo In ( )

with ki an arbitrary scaling factor that includes the compound effect of any renormalization-
scale prefactor choices and the optional translation between the MSbar and CMW schemes for
A, the evolution integrals are, for () :

kQQQI
CICEI hl(]\? AL2>

il (2 2\ _ 35
AE(QJ_DQJj) 47Tb0 n In <k§{ L2> ) ( )
N AZ
AL(Q%,,Q%,) = Not Used (generates Loglntegrals) , (86)
FRQT,
~ CI LK B ( N A2 )
L@ Q1) =2 In | —o | (87)
0 In ( N A )
for mp:
cI In ()
A}E I(mQDlv m2D2) =22 1n - ) (83)
’ 47Tbo 1 kEmb,
2 (%)
/l}?(m%l, m7,) = Not Used (generates LogIntegrals) , (89)
for my:
’f?sz,l
~ Cl, S In ( A2 )
As(mg,miy) = Tt | —s (90)
In ( " )
A.7 Generation of Trial Evolution Scale
The trial Sudakov factor is defined as:
AQ3,Q3) = exp |~ A@ Q)| | o1

11



and the next trial scale is found by solving the equation:

R=A(Q% Qhe) (92)
for Qpnew, With R a random number distributed uniformly in the interval R € [0, 1], and @ the
current “restart scale”. For strongly ordered showers, the restart scale after an accepted trial
branching is the evolution scale evaluated on the current parton configuration. For smoothly
ordered showers, this restart scale is only used for antennae that are not color-adjacent to the
branching that occurred; for the newly created antennae, and (optionally) for any color-adjacent
ones, the restart scale is the respective antenna invariant masses'.

For both strongly and smoothly ordered showers, the restart scale after a failed (vetoed) trial
branching is the scale of the failed branching.

Note: to optimize event generation, trial scales can be saved and reused for any antennae
whose flavors, spins, and invariant masses are preserved by the preceding branching step.

For constant trial &, the solutions for the next trial scale are, for @) | :

an 1
QiE‘new - QiRas Clee ) (93)
4 1
Q1 Frew = Q1 —mig 2N1 — ———1n(1/R), (94)
g CI(F
QZLI,KHGW = QiRiécja’K ) (95)
for mp:
szE,IneW = mZDR‘f Clem, ) (96)
A7 1
M ppew = Mp — Mg Np 4. Cln In(1/R), 97)
for £*:
4 1 2
Efew = ( VE2 —mix———(1/R) | , (98)
Qg C]CE
47 1
E*Q — E*2 - 2 __1 1
Fnew mIK éés 2CI<F Il( /R) ) (99)
for mp:
an 1
My Sneny = Mg R*Te5 (100)

I'This allows hard 2 — n branchings to be generated inside the newly created antennae (and optionally within
the color-adjacent ones) without disturbing the evolution of the rest of the event.

12



For a one-loop running trial &(p%), with p% oc 2, the solutions for the next trial scale are,

for Q) :
2 M2 4mb 20?2
() ().
202 1 dmb 202
o < R?ViIAI;new) —R2 CIC; In (j\?fit) 7 (102)
for mp:
k2m2 47b 2,,2
n < R%Ziénew) _ chrug’l In (?\?32) , (103)
for m-:
k2m2, drb kgm?.
o < R KQSnew) _ RCICg In (%) ) (104)

A.8 Generation of Trial Zeta
The trial value for ( is found by inverting the equation

- IC(Cmina C)
RC B IC(Cmina Cmax) ’

where the boundary values ((pin, (max) must be the same as those that were used to evaluate the
I integrals during the generation of the trial scale above, i.e., they must correspond to the phase-
space overestimate used for the trial generation. The forms of I are given for each evolution
variable separately in eqs. (53)—(60).

For () |, the solutions to eq. (105) are:

(105)

1
1 - Cmin Cmin(l - gmax))R
R)=|1 106
CIE,F( ) + Cmm (Cmax(l _ Cmin) ] ) ( )
1— Zmax ®
G1(R) = Gorc(R) = 1 — (1 o) (?) , (107)
for mp:
C R
(35(R) = Cuin (Qméx) ; (108)
§3F<R) = gmin + R(Cmax - Cmin) 5 (109)
N R
CSI(R) =1- (1 - Cmin) (11_—§-max> ; (110)

13



for E*:

e = R e aw

(17(R) = Guin + R(Cmax — Cumin) 5 (112)
for my-:

25(R) = Guin + R(Cmax — Gmin) - (113)

A.9 Accept of Trial Zeta: Massless Phase-Space Boundaries

The generated value of ( can now be compared to the limits imposed by the physical phase space
at the generated value of () and a rejection imposed if the generated ( value falls outside the
phase space, cf. eqgs. (14)—(25).

A.10 Inverse Transforms

After a set of shower variables has been generated, the Q* and ( choices must be inverted to
reobtain the branching invariants, (s;;, ;). which are used to construct the kinematics of the
trial branching. These inversions are, for () :

Q? C1 G2 (3
I Ay . 1@
Y 1-— Cl NJ_m%K CB NJ_m%K ’ (114)
A 1-G Q1 1 G
’ G NJ_m%K G2 Nj_m%]( ’
for mp (on y;; < y; branch):
sz (3
gy = b (115)
Np
yir = (3,
for £*:
E*2 Cl
E*Q
Yij = G m%K J (116)
E*Z
, - (1=
y]kz ( Cl) m%K )

14



for myg:

mgq C2
Yij = G\ (117)
2
y/' _ mqq
" mig

A.11 Mass Corrections for Light Quarks (u,d,s,c,b)

By default, VINCIA treats all the lightest 5 quark flavours as massless. However, it is still
possible to enable several corrections that approximate mass effects. The general treatment of
massive quarks is documented in [3]. We here adapt this treatment to the case of massless
kinematics, in the following way.

e Specify a mapping procedure that allows to translate an input parton state containing mas-
sive four-vectors for light-flavour quarks into an equivalent set of massless ones.

e Specify a reverse mapping that can be done at the end of the shower (or at an intermediate
scale to change to a different number of massless flavours), to translate a set of massless
partons into equivalent massive ones.

e Specify a procedure, consistent with the maps above, by which mass corrections can be
applied in the context of the massless evolution.
A.11.1 Mapping from Massive to Massless Momenta
To map a set of partons containing massive four-vectors to equivalent massless ones, we map
each 2-parton antenna in the input parton state to an equivalent massless one.
A.11.2 Mass Corrections

For a set of massless post-branching momenta, mass corrections are implemented in the follow-
ing way, designed to fit with the mapping algorithm described above: first, identify the corre-
sponding massive branching invariants by

massless

Si — qu = (2p; -pj)massive ) (118)

The equivalent massive phase-space boundaries can then be checked by requiring positivity of
the Gram determinant [3]:

A0 = G5 — digmi — dm; — gm; + dmimimi > 0, (119

with m; ; ,, the would-be physical masses of the post-branching partons.

15



A further level of refinement can be obtained by modifying the singularity structure of the
massless antenna functions to take universal eikonal mass corrections into account (exact for soft
gluon emissions) [3]:

ikonal S k
afria??i%e(@h gj, Qk) = Omassless — TZ - 71 > (120)

which can be applied as a multiplicative accept probability (with P < 1 since the corrections are
negative) to all gluon-emission processes.

Finally, for branchings involving g — Qij splittings, we use the following multiplicative
mass correction:

2

(massless + ﬁf_ 2m2 4
3 Mik Q 4k
Rxgx00(Xs, Q5,Qr) = Tjk ~ 1+ e (121)
massless ] ’L ij

Since the sign of the mass correction is positive here (opposite to the case for gluon emission
above), a headroom factor slightly greater than unity may be required to accommodate the en-
hanced splitting probability within the trial splitting overestimates.

A.11.3 Mapping from Massless to Massive Momenta

B Initial-Initial Evolution Equations

B.1 Evolution Variables

The evolution variables we use are

2 SajSjb SajSjb
— — : 122
Ql Sab SaB + Saj + Sib ( )
Q% = S4j , (123)
Q% = sjp - (124)

Phase Space Boundaries: With s, = sap+ 5, +5j, and s, < s, the phase space boundaries
are 0 < sq; + 55 < s — sap and for the single branching invariants 0 < s,; < s — s4p and
0 < sj < 5 — sap. The maxima of the evolution variables are

1(s—sap)?

Qo= (125)
Q% max = 5 — 548 , (126)
QQB max — S — SAB - (127)

16



B.2 Zeta Definitions

The choices are

G=24 = baj

)
Sab 5AB+Saj +Sjb

_ Saj
CZ - 3

SAB

Sib.

SAB

Sab
G=—".
SAB

)

The integration boundaries for the ¢ variables are

Qli(Qi) = 2_18 (S—SAB:E \/(S— SAB)2 _4Q3_S> s

1
<2 i(Qi) = 2548

(s — sap £ \/(s—sAB)2 —4Qis> ;

1
G+(Q1) = 51m
sap + Q?
G- (Q%p) = % G+ (Q%)p)

B.3 Jacobians

(s —sap £ \/(S—SAB)2 —4Qis> ,

S

SAB

(128)
(129)
(130)

(131)

(132)

(133)

(134)

(135)

The Jacobians for the transformation from the phase-space variables, (s,;, Sj), to the shower

variables, (Qg, (), are

1
2 _
’J<QJ_7C1)| - Sab<1(1 — Cl) )
1 1
’J(Qiy@ﬂ = 33”@—1 5G]
1 1
|J(Q2L:C3)| = 3217%1 "’C?, )

[ J(Q%, Ga)| = sas
| J(Q%, Co)| = sa -

17
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(139)
(140)



B.4 Trial Functions

The following trial functions are used:

1 [(25w548  Sai S 1 252
J Jb ~ ab
Asoft = T + + = Asoft = )
SAB SajSjb Sjb Saj SAB SajSjb
1 Sib Sab Sip  SAB s2, 1
Qeoin = — | 22— + 22 —22 = = 2“b —
SAB \ Saj SAB Saj Sab T Saj S4B Saj
1 Sai Sab Sai  SAB 2 1
Qooip = — | 2= = 22— =
SAB \ Sjb SAB Sjb Sab 1+ Sjb SAB Sjb
1 SipS s s 1
o jboAB ab ~ _ “ab
QsplitA = —2 + = Qsplit A = )
SAB Saj(Sab — Saj)  Saj SAB Saj
1 SaiSAB s Sap 1
- J ab ~ _ Sab
QsplitB = —2 + = QsplitB = D)
SAB 5jb<5ab - Sjb) Sjb SAB Sjb
2 2 2
. 1 Sib + s2 R S 1
Qeonv A = 9 P = Qeonv A = 2
Saj  SaB SAB Saj
1 82+ sz, . s3 1
QconvB = 9 2— = QconvB = >
Sjb SAB SAB Sjb

)

Y

(141)

(142)

(143)

(144)

(145)

(146)

(147)

Note that the overestimate of the soft eikonal term already includes the collinear singularities of

the quarks.

B.5 Integration Kernels

The overestimate of the evolution integral is

A C SA a (/5

i@ G = [ % 50y g0 2
2Enew 7T Sab

The integration kernels for the Q% integration are
1. Soft with Q2 and (;:
- aC sap 1 252 1 .
dAer(Q7) = = 2L s, Ry dQ3d
n(@1) AT S5, SAB SajSjb bQ(l—Cl) 7 d@1de
_ 401 d

Q2 al-¢)

2. A gluon collinear with Q2 and (3 (similar B gluon collinear with ¢y):

- aC sap s 1 1 1

dAcona(Q7) = = pp z R;dQ%d

Acona(Q1) 4 $2 T shp sajs sjbl—l—C;; / Q1dG
aC . Q3 dG

! Q7 143

18
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3. A gluon splitting
(a) with Q% and (3 (similar B gluon splitting with (5):

aSC SAB Sab 1 5, 1 1
Ar s, SAB Saj Sb%le(g
Rfsz d¢s
Q1 1+G

dApia(Q?) = Ry dQ? d¢s

(b) with Q% and (4 (similar B gluon splitting with Q% and (;):

_ aSCRfSAB dQA ac, ( Taxpy 1 >1+a
4m Sab Q% TaTp G4

o dsc > in} dC4

T 4 Q% Gt

dAgia(Q%) =

4. A conversion
(a) with Q% and (3 (similar B conversion with (»):

aSC SAB 52b 1 5,1 1

d-/[lconv 1) =
AQL) = pre 52b SABsaJS sjp 14 (3

_OésCR dQJ_ d¢s
a2 14

Rf d@ idC:a

(b) with Q% and (4 (similar B conversion with Q% and (y):

aCsAB sb 1

d conv d d
Acona(@%) = 47T pol QAdGs
L dQ3 <xaxb 1)0‘
R d —
/ Q% a TaTp (4
B (34 C dQ% dd
Qh G
Note that
A Lalp £ Sab A
R,: = R, = R
/ LATB / SAB /

and that we introduced a general factors « to control the PDF ratio better.
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B.6 Zeta Integrals and Generation of Trial Zeta

We have five different ( integrals to solve,

(" I ao\|® @(1—@))
[Cl_/ga dCl—Q(l—Cl)_ln(—l—Q) —ln(— ,

Ca Ca(l - Cb)
G 1 14+
Ie,y = ) dC2/31 T on = In(1 + C2/3)‘CZ =In (1 n <a> :
—a | —a_,—a
G CoP =% forq # 0
R AL T S
Ca lnC|szlng—: fora =0
1o C l—a_ s l-«
S R 175‘1 fora #1
Ca

Cb
Io= [ duge={ e :
o /c o In¢|® =lne  fora=1

Ca T a

The trial value for ¢ is found by inverting the equation

o [C(CmimC)
RC a [C(CmimCmax) 7

the solutions are

1+

1- Cmin (Cmin(1 - Cmax))RCl -
Cmin Cmax ( 11— Cmin) ’

1+ Goax 28
= (1 min -, -1 )
C2/3 ( +< ) <1+gmin>

_1
G = (Reit(Cain = Con) + o) ™
G = (Ree2(Gain™ = Goat) + Gt ) 7

B.7 Generation of Trial Evolution Scale

The integral over the evolution is scale is

The next trial scale is found by solving the equation

A(QE: Qe

for Q% .., For constant trial &, the solutions are

R
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1. Soft with Q2 and (;:

R = exp (—O;—‘;CICI]A%JI In ( Al

2

2
QLn

ewW

2 1

)) & Q= @RI

2. A gluon collinear with Q2 and (3 (similar B gluon collinear with (y):

R = exp <—O;—S7TC

3. A gluon splitting

(a) with Q% and (3 (similar B gluon splitting with (5):

]<2/3Rxf In (

L n

a,C

R = exXp <—E[C2/3Rf In (

Q1
2

ewW

)) o Q=R

27 1

~

a,C 142/3 Rmf

4 1

2 ~ 4 _  ~

2
QJJ]CW

(b) with Q% and (4 (similar B gluon splitting with Q% and ():

asC

47

4. A conversion

2
QAnew

(a) with Q% and (3 (similar B conversion with (y):

asC

R = exp (—4—I<2/3sz In (
T

(b) with Q% and (4 (similar B conversion with Q% and (y):

asC

47

R = exp (——IQQRM: In (

Running of the Coupling:

We use

Q1

1 new

1

bo 1n<
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Q%
A2

2 )) o Qo= PR

Qi )) 5 Qo

2
QAnew

)

4 1

2 ~ A ~
R = exp (__]<41Rmo‘f In (&)) = Q,Qélnew — QQAROZSC I§4 IR:BD‘f

47 1

OzSC IC2/3 Rfff

47 1

— QiRdSC [C4 QRIaf

(167)

(168)

(169)

(170)

(171)
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to write the evolution kernels as

k2 QQE
. dO?2 . In (R—Q)
dA = Com % =4 ./4 = Com In kQ—AQ (174)
Q% In < 13,\8E> In ( RAgnew>

The solutions for the next trial scale Q% ., are therefore

In <—k%\gQE> A2 [ k2 Q2 R1/Com
W S Qfnew = g ( ]j\QE) : (175)
A2

R =exp | —Com In

To include two-loop running we use one-loop running as above and veto with

2 2
ol (@, Ageo)

(176)
ol (@, Ageo)
B.8 Inverse Transforms
The inversions are for Q% and (;
2
o= 2L (177)
G
Qi + (1548
Sy = £ 21248 178
A (178)
and for Q? and (,
Saj = (2545 (179)
Q1(1+¢)
Sjp = ———5—F—— 180
7 C2_Q2L/5AB ( )
and for Q? and (3
Sjb = (354B (181)
QL1 +G)
Sej = ——5— , (182)
’ G — Qi/SAB
and for Q% and (4
saj = Q4 (183)
sjp = sap(C1— 1) — Q% , (184)
and for Q% and (4
sip = Q% (185)
Saj = Sap(Ca—1) — Q% . (186)
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C Initial-Final Evolution Equations

C.1 Evolution Variables

The evolution variables we use are

QQ _ Sajsjk
1 — )
SAKk + Sjk
2
QA = Saj ’
2
QK = Sjk .
Phase Space Boundaries: With s i + sjr = Sq5 + Sqr and sj; = —Sax + Sex =

T A)\/SPK—, the phase space boundaries are 0 < s < 1=

maxima of the evolution variables are

9 1 — XA

Qi max T4 SAK
2 _

QA max SAK/xA )
2 1 — XA

QK max T SAK -

C.2 Zeta Definitions

The choices are

1= =
SAK TA
S .
CQ - “ )
SAk + Sjk
=22
Sjk

The integration boundaries for the ¢ variables are

sak + Q3

)

2
@) = B @ =
AK TA
224 -
(-(Q1) = m G (@) =1,
Q2
G-(Q1) = WEA)Q (3+(Q) =
2
G- (Q%) = max < v_A) G4+(Q%) = L
SAK TA
(- (Q%) =0 G+ (Q%)=1.
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(187)

(188)
(189)

(Ta —

ijsAK and 0 < s, < sai + Sj,. The

(190)
(191)
(192)

(193)
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(195)

(196)

(197)

(198)

(199)
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C.3 Jacobians

The Jacobians for the transformation from the phase-space variables, (s,;, s;jx), to the shower

variables, (Qg, (), are

C.4 'Trial Functions

| J(Q%: C1)| = sax
1J(Q%, G2)| = sak + sjk -

[ 7(Q1, ¢l =

The following trial functions are used:

(Sax + Sjk)SaK

QqcolA = —— ——

QqcollK =

2 Sjk Sak
QgcolllA = —— ——
SAK Saj SAK
QSjk
Saj(SAK + Sjk)

1 84 Sak
QgcollK = —— —
SAK Sjk SAK

Qgcoll2 A =

1 s 2 Sjk SAK — Saj

SAK Saj SAK T+ Sjk
2 2

. - 11 Sak’ +Saj
plitk = 3~ 35—
28k Sak

24

Sik
(5aK + 5jk)°

)

_ L (sak + sin)’
G (254K + Sjk)

. 25 Ak + Sjk
Asoft = —~5 >
1SAK

R 1 sjp+ sak

CchollA -
SAK Saj

. . 1 Sik + SAK

QqcollK =

Ggcolll A = 2

)

SAK

2

QgcolA = )

GgcollK =

Qeonv A =
QgplitA =

A

GgplitK =

Saj

1 saj Sarx + Sjk

Sjk

(sak + sj1)°

2
SakSaj

Y

Y

Y

SAK Sjk

Saj

SAK

2 Sk

SAK

2
SAk

2 Sak + Sjk

Saj

2
SAk

Y

1 (SAK -+ Sjk)Q

Y

11 (sak + sji)?

)

(201)

(202)

(203)

(204)
(205)

(206)

(207)

(208)

(209)

(210)

(211)

(212)

(213)

(214)



C.5 Integration Kernels

The overestimate of the evolution integral is

A QQEF @SC s d
A(Q%F,Q%new)z/ A4 Ry |J] dQ3dC d). 215)

2 Aw (Sar + sjK)?

The integration kernels for the Q% integration are

1. Soft with Q2 and (3:

asC SAK 25k + 56 1 (sax +sjn)” - 2
SO (s R d d
ft(QJ_) 4 (sax +si5) Q% sak G (28ax + Sji) rdQ71dG
asC » dQ7 d¢s
B dgs (216)
e

2. A quark collinear with Q2 and ¢;:

P a,C SAK 1 Sjk+ sark (Sax + Sjk)Sak
dA o 2 — J J
acotr(Q1) A (sak + Sjk)2 SAK  Saj Sk
a,C -~ dQ? z, 1\
Sy WA
4m Q Lq A Cl

sC R dQJ_ dCl

Q
8 (217)
dm QG

Ry dQ2d¢,

3. K quark collinear with Q? and (y:

. aC SAK 1 sjn+ Sax (Sarx +sx)? -
dAgeo 2 = J I R,dQ?d
qeotik (1) = - (a4 5 sar sir o rdQ71d¢,
C . d
_ QLd@ (218)
4. A gluon collinear 1 with Q% and ¢;:
- a,C SAK (sax + 8j8)% (Sax + Sjk)Sax 2
dA, . 2y = 2 J J R, d0O2d
Agconi a(Q7) i (san + 550)? 2 o - f Q7 d¢
d . 1\
= R Qidgl (:c__)
Ta 1
@SC -~ dQ3 dG
_GCp  dO1dG (219)
2r QR (P
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5. A gluon collinear 2 with Q% and (;:

A a,C SAK 2 (Sak + Sjk)sak »
dA o 2 _ S e J
g 112A(QJ_) A (SAK +Sjk)2 Saj Sik

2+8
(2 (5)

o asc > dQL dCl
= or Beor gy 23 (220)

1

Ry d@* d¢y

6. K gluon collinear with Q2 and (y:

A a,C SAK 1 su4i Sax + Sik (SAK+S'k)2 A
dA co 2 pr— _‘7 J J R d 2 d
sconc(@1) dr (sak + Sjk)? Sak Sjk SAK Saj s 401
dSC . d
= "Ry gl@d@ (221)

7. A conversion

(a) with Q% and (;:

dAconvA(Qi) = dsc SAK L<SAK + Sjk)Q (SAK + S]lc)SAK
dm <SAK + 5jk)? Saj Sk Sjk

dQl dCl (ﬁl) ’

T4 QG
dsc - in dCl

Ry d@7 d¢y

= E xﬁfQ—iE (222)
(b) with Q% and (;:
A ASC SAK 1 (SAK+S'k)2 ~
dAcoma(Q%) = = — ! Ry dQ%d
A(Q%) A (SAK—FS]k)Q Saj 3,24}{ sak Ry dQ1dG
d z, 1\”
4 ()
QA rA QG
&SC A dQA dCl
= Rm (223)
Tond

8. A gluon splitting
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(a) with Q% and (;:

dAsplit A (Qi ) =

(b) with Q% and ¢;:

dAsplitA( Q%) =

9. K gluon splitting

(a) with Q% and (o
dAsplitK(Qi) =
A
(b) with Q% and (y:

dvzlsplit K (Q%{) =

Note that

0.C AR 2 2 sax ¥ o (SaK T pk)3ak éf dQ7d¢
4 (SAK +5k)% SaKk Saj Sjk
. dQ? l za (e 1\
dG— | — =
Tag \TA Cl
OzsC L d@? d¢g
_aCp 224
aC SAK 2 SAK + Sk

sax Ry dQ34d¢,

47 (SAK + Sjk)2 SAK  Saj

— dQA ¢, 4 (ﬁl) o

QA T4 1
Qg C . d d
= Ch, 3; clil” (225)
C _ sax L1 (an+ sl (sa £s)” pogon g,
AT (Sak + Sjk)? 2 sk A5 Saj
d
R”fé?? dc, (226)
asC SAK 11 (sak + sji)? ~ 2
el ) Ry dQsd
It (oan tonl 2o Sn (sax + sjx) Ry dQ5dG,
a,C ~ d
ity 9, o
K
Ruy = j—:fzf - S“;;f’“ffz (228)

and that we introduced general factors § and ~ to control the PDF ratio better.

27



C.6 Zeta Integrals and Generation of Trial Zeta

We have five different ( integrals to solve,

Gb
I tin :/ d¢ = C|§Z =G — Cas
Ca

G C2 §2 _ CQ
]C,quad = Cdg - =% e )
Ca 2 Ca 2
X d¢ Cb
IC,log = c C 1 C| C
1-8 G 1-8
s “d 35) :412 for 3 # 1
’ @ ¢ 1ng| for § = 1

_3 % B_—B

I / T

¢,B2 = = G
Ca CHﬁ

Cb dC ¢ =
I g3 = / —— = 1P, —1-6
¢, B o C2+ﬁ 11’1C| b ln@
Ca Ca

The trial value for ( is found by inverting the equation

]Q (Cmin, C)

Re = —=mnnl
¢ IC(Cmim Cmax)

the solutions are
Clin = Rglm(gmin - <max) + Cmax 5
Cquad - \/RCquad min max) + Cglax )

Cmin Rqog
Clog = Cmax D )
gmax

Go1 = (Rewn (G = ) + Gl )

1

B

G2 = (Replan — ) +Gat)

Gos = (ResoGomn ™ = G ) + G )

C.7 Generation of Trial Evolution Scale

The integral over the evolution is scale is

/QEF dQ7 —1n QE QEF 1 Q%r

2 Q2 E new 2E' new '

E new

28

—% for 5 #0
In¢l¢ =& forf=0

—-1-8 b . Caflfﬁicbflfﬁ forﬂ ;é _1

(229)

(230)

(231)

(232)

(233)

(234)
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The next trial scale is found by solving the equation

A(O2 )2

A<QE7 QEnew) =R
for Q% .- For constant trial &, the solutions are

1. Soft with Q2 and (3:
4r 1

&C I ool
Qinew = Qi,R’ ° CdJOng

2. A quark collinear with Q2 and ¢;:
47 1

Qinew - QiRasC IC17/32R$ﬁf

3. K quark collinear with Q2 and (y:
47 1
Qinew = QiR&SC ]Cl’lian

4. A gluon collinear 1 with Q% and ¢;:
27 1

a:C I, 1R
Qinew = QiR S AL Bl f

5. A gluon collinear 2 with Q% and (;:
41 1

aC I 2R
Qinew = QQLR 5 G, B35 B f

6. K gluon collinear with Q2 and (y:
4 1

Qinew = QiRasC [CQ,quadef

7. A conversion
(a) with Q% and (;:
47 1

asCr R
Qinew = Qi’R’ ° G, ALEtal f
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(b) with Q% and (;:
47 1

aC T »
QZAnew = Q?LXR ’ Clﬂngvf

8. A gluon splitting
(a) with Q% and (;:
2m 1

aC T ’
Qinew = QiR 5 41752R‘rﬁf

(b) with Q% and (;:
27 1

asC :
Q?élnew = Q?LXR ’ ICI’WQRIWJC

9. K gluon splitting
(a) with Q% and (o
8T 1
Q% e = QiR@SC Ity iRy

(b) with Q% and (y:
8T 1
Q%(new = Q%{Rdsc ICs,liner

Running of the Coupling: See initial-initial.

C.8 Inverse Transforms

The inversions are for Q* and (;

Sik = sak (G — 1)

6 = Q1G
YooG-1
and for Q% and (;
_ Q%
Saj = N_I

sjk = (Q1 — 1)sax
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and for Q% and ¢,

Sjk = 7: (260)
Saj = SaCe + Q1 (261)
and for Q% and (,
sik = Qx (262)
Saj = G2 (SAK + Q%{) (263)

and for Q? and (3

(264)

)
)

2
Sjk = & (1—|—“1—|—4Q<—:%SAK
9y (1 45
Sa] 9 ( + + QiSAK
D Accept Probabilities

D.1 Helicity Selection
See [4].

D.2 Smooth-Ordering Factor: P,

Note: this section is largely adapted from the discussion in [5].

In smooth ordering, the only quantity which must still be strictly ordered are the antenna
invariant masses, a condition which follows from the nested antenna phase spaces and momen-
tum conservation. Within each individual antenna, and between competing ones, the measure of
evolution time is still provided by the ordering variable, which we therefore typically refer to as
the “evolution variable” in this context (rather than the “ordering variable”), in order to prevent
confusion with the strong-ordering case. The evolution variable can in principle still be chosen
to be any of the possibilities given above, though we shall typically use 2p,; for gluon emission
and m,g for gluon splitting.

In terms of an arbitrary evolution variable, (), the smooth-ordering factor is [4]

Pimp <Q2,Q2> = @QTZP

where () is the evolution scale associated with the current branching, and Q measures the scale
of the parton configuration before branching. A comparison to the strong-ordering step function

) (266)

31



1.00f — :
0.50°

0.20

g0.10!
o 010

0.05¢

0.02
0.01t

01 0.2 05 10 20 50 10.0
Q9?

Figure 1: The smooth-ordering factor (solid) compared to a strong-ordering © function (dashed).

is given in fig. 1, on a log-log scale. Since this factor is bounded by 0 < F;,, < 1, it can be
applied as a simple accept/reject on each trial branching.

When switched on, smooth ordering is technically achieved as follows. After each accepted
branching, the daughter antennae involved in that particular branching are allowed to restart
their evolution from a scale nominally equivalent to their respective kinematic maximum. Trial
branchings are then generated in the “unordered” part of phase space first, for those antennae
only, while all other antennae in the event are “on hold”, waiting for the scale to drop back down
to normal ordering before the global event evolution is continued. The P, factor is applied as
an extra multiplicative modification to the accept probability for each trial branching, in both the
ordered and unordered regions of phase space.

In the strongly-ordered region of phase-space, () < Q, we may rewrite the P, factor as

1 N 2
Py = > Qé@l—? +... . (267)
1+§ Q2

Applying this to the 2 — 3 antenna function whose leading singularity is proportional to 1/Q?,
we see that the overall correction arising from the Q?/Q? and higher terms is finite and of order
1/ Qz; a power correction. The LL singular behaviour is therefore not affected. However, at the
multiple-emission level, the 1/ Q? terms do modify the subleading logarithmic structure, starting
from O(a?), as we shall return to below.

In the unordered region of phase-space, () > Q, we rewrite the P, factor as

Q1 g @ Q’
Rmp_@Hg = @< —@—F...), (268)

which thus effectively modifies the leading singularity of the LL 2 — 3 function from 1/Q?
to 1/Q*, removing it from the LL counting. The only effective terms oc 1/Q? arise from finite
terms in the radiation functions, if any such are present, multiplied by the P, factor. Only a
matching to the full tree-level 2 — 4 functions would enable a precise control over these terms.
Up to any given fixed order, this can effectively be achieved by matching to tree-level matrix
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elements. Matching beyond the fixed-order level is beyond the scope of the current treatment.
We thus restrict ourselves to the observation that, at the LL level, smooth ordering is equivalent
to strong ordering, with differences only appearing at the subleading level.

The effective 2 — 4 probability in the shower arises from a sum over two different 2 —
3 ® 2 — 3 histories, each of which has the tree-level form

)2
APimpAocAiAQ—i:;i, (269)
0? Q2+ Q? Q? Q? + Q? Q?
thus we may also perceive the combined effect of the modification as the addition of a mass term
in the denominator of the propagator factor of the previous splitting. In the strongly ordered
region, this correction is negligible, whereas in the unordered region, there is a large suppression
from the necessity of the propagator in the previous topology having to be very off-shell, which is
reflected by the P, factor. Using the expansion for the unordered region, eq. (268), we also see
that the effective 2 — 4 radiation function, obtained from iterated 2 — 3 splittings, is modified
as follows,

in the unordered region. That is, the intermediate low scale Q, is removed from the effective
2 — 4 function, by the application of the P, factor.

D.3 All-Orders P, Factor

The path through phase space taken by an unordered shower history is illustrated in fig. 2,
from [5]. An antenna starts showering at a scale equal to its invariant mass, /s, and a first
2 — 3 branching occurs at the evolution scale (). This produces the overall Sudakov factor
Ag 3(4/s, Q) A daughter antenna, produced by the branching, then starts showering at a scale
equal to its own invariant mass, labeled ,/s;. However, for all scales larger than Q the P, fac-
tor suppresses the evolution in this new dipole so that no leading logs are generated. To leading
approximation, the effective Sudakov factor for the combined 2 — 4 splitting is therefore given
by

AT, ~ Ays(v5,Q), 271)

in the unordered region. Thus, we see that a dependence on the intermediate scale Q still remains
in the effective Sudakov factor generated by the smooth-ordering procedure. Since Q < Qinthe
unordered region, the effective Sudakov suppression of these points might be “too strong”. The
smooth ordering therefore allows for phase space occupation in regions corresponding to dead
zones in a strongly ordered shower, but it does suggest that a correction to the Sudakov factor
may be desirable, in the unordered region.

A study of Z — 4 jets at one loop would be required to shed further light on this question.
In the meantime, for all unordered branchings that follow upon a gluon emission, we allow to
include a correction to the Pj,,, factor that removes the leading (eikonal) part of the “extra”
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Figure 2: Illustration of scales and Sudakov factors involved in an unordered sequence of two
2 — 3 branchings, representing the smoothly ordered shower’s approximation to a hard 2 — 4
process.

Sudakov suppression. We define an all-orders corrected P, factor as follows:

05(Q%) Pny(Q*, Q%)
(@) Agk, (Q2,Q2)

Pt (QQ, QQ) — 272)

with the Eikonal terms of the Sudakov integral given by [5]:

! exp (258 e 15) - 2100) - 1) +250)] )

A (007)

where C is the colour factor of the first 2 — 3 branching (the one that produced the intermediate
scale Q) inside which the unordered 2 — 4 branching is occurring, and y = Q%/m2 (jj = Q2/m2)
is the branching scale normalized to the invariant mass squared of that antenna. For evolution in
p. (the default for gluon emissions), the /; and I, integrals are [5]:

hw =T+t v - -’ E <1+\/1—7y?)} — 2L B (1—1-\/1—73/2)]

6 2 2<1+ 1—y2>—y

(273)

Ly)=—[In y o142 | (274)
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Figure 3: Illustration of the intersection/nesting of pr and mp contours.

with expressions for other ordering types available in [5]. We note that this factor neglects (pos-
itive) collinear-singular terms and (positive) corrections from the running of a, between () and
Q, hence we expect that even this correction factor still only represents a partial compensation, at
a level equivalent to removing spurious terms of total order o In*(Q?/Q?) and o In*(Q?/Q?).
We also note that a similar factor could be applied

D.4 Gluon Splitting: The Ariadne Factor

D.S Matrix-Element Corrections: Leading Colour

D.6 Matrix-Element Corrections: Full Colour

D.7 Matrix-Element Corrections: Different Interfering Borns
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E Cutoff Boundaries

E.1 Fixed Transverse Momentum

e Consider the region defined by y;;vy;, > vy . For illustration, a value of y; = 0.1 was used
for the contour shown with light green shading in fig. 3.

e The (larger) invariant-mass region that completely encloses the v, one is defined by yp =
min(y;;, y;x) > 5(1 — /T — 4y ). This is shown with light blue shading in fig. 3.

e The (smaller) invariant-mass region that is completely enclosed by the y, one is defined
by yp = min(y;;, y;x) > 1/yL. This is shown with light yellow shading in fig. 3.

To translate this to evolution variables, with arbitrary normalization factors, use y, = Qi /srx /N1
and mzp/SIK/ND-

E.2 Fixed Dipole Mass

e Consider the region defined by min(y;;y,1) > yp, with yp some fixed value.

e The (larger) transverse-momentum region that completely encloses the yp one is defined
by y1 = yi;y;r > vy This relationship is illustrated by the light-green and light-yellow
shaded regions in fig. 3.

e The (smaller) transverse-momentum region that is completely enclosed by the yp one is
defined by y, = yyy; > (1 — (1 — 2yp)?). This relationship is illustrated by the
light-green and light-blue shaded regions in fig. 3.

To translate this to evolution variables, with arbitrary normalization factors, use y; = Q2 /srx /N,
and m%/le/ND.

References

[1] Walter T. Giele, David A. Kosower, and Peter Z. Skands. A Simple shower and matching
algorithm. Phys.Rev., D78:014026, 2008.

[2] W.T. Giele, D.A. Kosower, and P.Z. Skands. Higher-Order Corrections to Timelike Jets.
Phys.Rev., D84:054003, 2011.

[3] Aude Gehrmann-De Ridder, Mathias Ritzmann, and Peter Skands. Timelike Dipole-Antenna
Showers with Massive Fermions. Phys.Rev., D85:014013, 2012.

[4] Andrew J. Larkoski, Juan J. Lopez-Villarejo, and Peter Skands. Helicity-Dependent Showers
and Matching with VINCIA. Phys.Rev., D87(5):054033, 2013.

[5] L. Hartgring, E. Laenen, and P. Skands. Antenna Showers with One-Loop Matrix Elements.
JHEP, 1310:127, 2013.

36



	Final–Final Evolution Equations
	Evolution Variables
	Zeta Definitions
	Jacobians
	Trial Functions 
	Zeta Integrals
	Evolution Integrals
	Generation of Trial Evolution Scale
	Generation of Trial Zeta
	Accept of Trial Zeta: Massless Phase-Space Boundaries
	Inverse Transforms
	Mass Corrections for Light Quarks (u,d,s,c,b)
	Mapping from Massive to Massless Momenta
	Mass Corrections
	Mapping from Massless to Massive Momenta


	Initial–Initial Evolution Equations
	Evolution Variables
	Zeta Definitions
	Jacobians
	Trial Functions
	Integration Kernels
	Zeta Integrals and Generation of Trial Zeta
	Generation of Trial Evolution Scale
	Inverse Transforms

	Initial–Final Evolution Equations
	Evolution Variables
	Zeta Definitions
	Jacobians
	Trial Functions
	Integration Kernels
	Zeta Integrals and Generation of Trial Zeta
	Generation of Trial Evolution Scale
	Inverse Transforms

	Accept Probabilities
	Helicity Selection
	Smooth-Ordering Factor: Pimp
	All-Orders Pimp Factor
	Gluon Splitting: The Ariadne Factor
	Matrix-Element Corrections: Leading Colour
	Matrix-Element Corrections: Full Colour
	Matrix-Element Corrections: Different Interfering Borns

	Cutoff Boundaries
	Fixed Transverse Momentum
	Fixed Dipole Mass


