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A Evolution Equations

A.1 Final-Final Evolution Variables

The evolution variables considered in VINCIA for final-final antennae are the following [1,2]:

SijSjk
QI =N, - = N yij yjemix = NLpia, (D
Mk
m% = ND min(sij, Sjk:) = ND min(yija y]k) m%K ) (2)
N (855 + sjx)?
IK
m2. =m3, 4)

with the arbitrary normalization factors NV, € [1,4] and Np € [1, 2], the invariant mass
mix = (pr+px)? = (i +p;+p)*, )
and the symbol s;; defined as the dot product
m=0
sy = 2pi-p; = (pitp)?—mi—mi "= mi. (6)

The maximum values that these evolution variables attain on the physical final-final antenna
phase-space are:

N
Qimax = TJ_miK ) (7)
N
m2Dmax - TDm?K ) (8)
E:fax = m%K ) (9)
m?]*max = m?K . (10)

Note on dimensionality: the dimensionless form of the evolution variable is y = Q?/m?,
with () denoting the choice of evolution variable among the above possibilities. Throughout, we
use the notation y for scaled dot products, y;; = s;;/m3,, and y' for scaled invariant masses,

r_ 2 2
Yi; = mij/mIK'

Note for mp: the expressions below correspond to the branch with y;; < ;. and hence will
only generate branchings over half of phase space. For trial antenna functions symmetric in the
invariants (specifically the soft-eikonal and hard-finite ones, see sec. A.4), the trial generation is



done by multiplying the kernel by a factor 2 and randomly keeping or swapping the generated
invariants. For the /- and K -collinear sector terms, we use that they are mutually related by
1 <> k, and hence an [-collinear term over all of phase space can be composed from an /-
collinear one on the branch y;; < y;, combined with a /K '-collinear one with swapped invariants
on the complementary branch.

A.2 Zeta Definitions

The following choices of ( are used:

Yij
= — 11
G R (11)
G2 = Yij (12)
03 = Yjk - (13)

The final-final phase-space limits are, for @, :

2
G(Q%) = % <1 /11— NiLT%lK) = % (1£ V1 —4yijyn) (14)
G (Q1) = G(Q7) (15)
G2(Q1) = G(Q7) (16)



for mp:

1
Gi-(mp) = 3 (17
o) =1— "D 1y (18)
1+ D NDm%K ylj )
(o—(m}) = N/A | (19)
Cor(m3) = N/A (20)
(3-(mp) i Q1)
—(m — = Yij ,
3 D NDm%K y]
Gulmd) =1— "D 1y, (22)
3+ D NDmﬁK yl] )
for £*:
(+(E*?) = Special: see below (23)
for mg-«:
(o (m2;) =0, 24)
m2.
G (M) = 1= = =1~y 23)
1K

using the definition y};, = m?k /m?, in the last expression. Note that the phase-space limits
for E* coincide with the collinear limits. Integrations over any finite interval of E* over the
full allowed ¢ range would therefore yield infinities. When using E*-ordering, it is necessary to
impose a hadronization cutoff in a complementary variable, such as (), or mp. This cutoff then
defines the ¢ boundaries for the integrations.

A.3 Jacobians

The Jacobians for the transformation from the original LIPS variables, (sij, sjk), to the shower
variables, (Q?, (), are written as a product of a normalization-and-Q-dependent piece and a (-

dependent factor,
|| =Jg x Je . (26)



They are, for Q?%:

1 m?2
J 27 _ % IK ’
QL= g5 X G-
1 m?2
J 2’ - % IK ’
’ (QJ_ CQ)‘ NJ_ C2
1 m?2
J 2’ - % IK ’
’ (QJ_ C3)‘ NJ_ C3
for m2:
|J(m3, ()| = Not Used ,
|J(m3, G)| = N/A,
2 1 2
|J(mp,(3)| = N_D X Mig
for £*2:
*2 1 2
I(E2,G)| = 5 X mic
mri
J E*Q, - 8 2 ’
| ( C?)| 2@ IK
mri
J(E*2, = ——— xm?,,
‘ ( C3)| 2@ IK
for mg-«:

(27)

(28)

(29)

(30)

€1y

(32)

(33)

(34)

(35)

(36)



A.4 Trial Functions

The following trial functions are available:

1 2
Eikonal (soft) : 4y = —; (37
Mk YijYik
. 1
Constant (hard) : ap = —— (38)
Mrk
. . 1 2
I Collinear (sector) : a5 = — (39)
mig Yij (1 — Yjk)
. . 1 2
K Collinear (sector) : ax = (40)
M Yie(1 — yij)
" . 1 1 1
K Splitting (9 = ¢@) : s = —5 = ————, 41)
Myg Mk Yjk
where we emphasize that y/j,, in the last expression is defined by ¥}, = m?, /m7x.
A.5 Zeta Integrals
For a given trial antenna function, a, the definition of the ¢ integral is:
b
I = / dc Jc i 42)
Ca

where | J¢| signifies the part of the Jacobian that only has ¢ dependence (see above), and ¢, > (,
represents an arbitrary ¢ interval. This interval will in general be larger than the physically
allowed one (trials generated outside the physical phase space will be rejected by a veto). We
shall nevertheless still assume that all ¢ values are at least inside the range ¢ € [0, 1].

The integration kernels are, for () :

1

Je &E,F(inﬁ) = m ) 43)
Jear(Q3,¢s) = a _1 &) (44)
Jeak(Q1,G) = (1_1@ , (45)



for mp:

for E*:

for mg-«:

R 1
J¢ @E(m2D7C3) ==,
(3

Je &F(m%a@) =1,

1
(1—G)’

Jear(mp, G3) =

P 1
Jg aE(E 2»(1) = 25
1

. . 1
Jg CLF(E 27C1) = 5 )

Jeas(m., (o) =1

with integrals over the range (, < (, for Q) :

for mp:

for £*:

QEF@ﬁ,Q)=1H<Q(1_QJ)7

Ca(l - Cb)

]CI(Qiag?)) =1In (1 — Ca) ’

1 =G
Ik (Q1, () =In (1 : g:) )
Icg(m},¢) =In (%) ,

IgF(m%, Cs) =G —Cas

Icl(m%),@) =1In (1 — Ca) )

1—G

1 1
Icg(B* ()= — — —
CE( 7§1) 2 ij

Iep(E?,G) = G —Ca s

7

(46)

(47)

(48)

(49)

(50)

(5D

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)

(60)



for my-:

Ies(mge, Ga) = G — Ca - (61)

A.6 Evolution Integrals

The evolution integral, for a particular choice of () and , is defined as follows

AQ @) = / 10" 5o 1(@,0) 11Q.0). (62

IK

with C the (trial) color factor (typically C'4 for gluon emission and 1 for gluon splitting) and Jg
the non-( dependent part of the Jacobian, see eqgs. (27) — (36).

Note: for massive partons, the phase-space factor should actually be larger: m;x in the
denominator should be replaced by the Kéllén function, see [3]. This is taken care of during trial
generation by applying an overall prefactor representing the phase-space volume and using the
same integrals as shown here below.

We label the integrand in the above equation by

~ C g2
dA = 5
A 1672s

Jo(Q,¢) 1(Q, () , (63)

which takes the following specific forms, for () :

1

. Qs
AR(Q1) = 3 Clen(@1,G) g (64)
(Q?) = % 2 ) —
dAF(Ql) - 2NJ_ A CF(Qia Cl) m%K ) (65)
1
dA(QY) = 2 Cfgl(Qp(:a) (66)
J_
) A, 1
AAi(@1) =27 C L @16 g5 (67)
for mp:
) v, 1
dAp(mp) = %T C2Icp1(mb, C3) mZ (68)
) 1 a, 1
dAp(m) = 2 C (. o) —— g (69)



for E*:

for my-:

(70)

P 1
d E*2 _ _SC[ *2 -
Ap(E™) - ce(E™, ) Foome )
R A 1 1
dAR(E?) = 22 ¢ 21 p(E* 71
AF( ) 471'02 CF( 7Cl) %Ka ( )
A 9 Qg 9 1
d.As(mg*) = E C ICS mg* y CQ) @ (72)
For a constant trial &, the evolution integrals are, for (| :
AR(@11, Q1) = Cch In (Q“) : (73)
12
q 1 (@1 12)
(@11 Q1) = 557 4— S Clop = (74)
2
C ICI K In ( ) (75)
Q1,

AT (@Q11,Q%,) =
for mp:
AE I(mm m2D2) = _CQICEI In (mm) (76)
’ mDQ ’
. 1 (m$, — m3
A% (mby, mi,) = N, EC]CF D;,,L%K = (77)
for £*:
10 *2 %2 OAéS Eik2 B E;2>
AE(El ,E2 ) = _CQICE ) (78)
T mri
0 w2 ey Qs o1 (EY? = E5?)
Ap(E77 E5°) = EC Sler o (79)
for mg:
10 (2 Qs m?ﬂ
AS(ngm 2) EC[CS In m—?ﬂ (80)



For a first-order running trial &,(Q?),

1 1

6.(Q1) = ot (254) = ot () 81)
A 1 B 1

x(mp) = %m<Riﬁ__%m(%ﬁQ’ ®2
Gs(mz.) = ! (83)

2
g* m2 )
bo In ( )

with ki an arbitrary scaling factor that includes the compound effect of any renormalization-
scale prefactor choices and the optional translation between the MSbar and CMW schemes for
A, the evolution integrals are, for () :

kQQQI
CICEI hl(]\? AL2>

il (2 2\ _ 84
AE(QJ_DQJj) 47Tb0 n In <k§{ L2> ) ( )
N AZ
AL(Q%,,Q%,) = Not Used (generates Loglntegrals) , (85)
FRQ%,
~ CI LK B ( N A2 )
Ale(@11, Q1) =2= 5 | —5n ) (86)
0 In ( N A )
for mp:
cI In ()
A 1(mby mby) = 2= In - : (87)
’ 47Tbo 1 kEmb,
» (%)
/l}?(m%l, m7,) = Not Used (generates LogIntegrals) , (88)
for my:
’f?sz,l
- CI In ( AZ )
A5y miy) = Lo | s (89)
In ( " )
A.7 Generation of Trial Evolution Scale
The trial Sudakov factor is defined as:
AQ3,Q3) = exp |~ A@ Q)| | (90)
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and the next trial scale is found by solving the equation:

R=A(Q% Qhe) O1)
for Qpnew, With R a random number distributed uniformly in the interval R € [0, 1], and @ the
current “restart scale”. For strongly ordered showers, the restart scale after an accepted trial
branching is the evolution scale evaluated on the current parton configuration. For smoothly
ordered showers, this restart scale is only used for antennae that are not color-adjacent to the
branching that occurred; for the newly created antennae, and (optionally) for any color-adjacent
ones, the restart scale is the respective antenna invariant masses'.

For both strongly and smoothly ordered showers, the restart scale after a failed (vetoed) trial
branching is the scale of the failed branching.

Note: to optimize event generation, trial scales can be saved and reused for any antennae
whose flavors, spins, and invariant masses are preserved by the preceding branching step.

For constant trial &, the solutions for the next trial scale are, for @) | :

an 1
QiE‘new - QiRas Clee ) (92)
4 1
Q1 Frew = Q1 —mig 2N1 — ———1n(1/R), (93)
g CI(F
QZLI,KHGW = QiRiécja’K ) (94)
for mp:
szE,IneW = mZDR‘f Clem, ) (95)
A7 1
M ppew = Mp — Mg Np 4. Cln In(1/R), (96)
for £*:
4 1 2
Efew = ( VE2 —mix———(1/R) | , (97)
Qg C]CE
47 1
EZ? =E?—m? ———In(1l/R 98
Fnew mIK éés 2CI<F Il( / ) ) ( )
for mp:
an 1
My Sneny = Mg R*Te5 (99)

I'This allows hard 2 — n branchings to be generated inside the newly created antennae (and optionally within
the color-adjacent ones) without disturbing the evolution of the rest of the event.
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For a one-loop running trial &(p%), with p% oc 2, the solutions for the next trial scale are,

for Q) :
E202 4mb k202
() ().
202 1 dmb 202
o < R?ViIAI;new) —R2 CIC; In (j\?fit) 7 (101)
for mp:
E2m?2 b 2,2
In < R%Ziénew) _ chrug’l In (?\?32) , (102)
for m-:
k2m2, drb kgm?.
1H< R KQSnew) :RCICE 111( RAzg ) ' (103)

A.8 Generation of Trial Zeta
The trial value for ( is found by inverting the equation

- IC(Cmina C)
RC B IC(Cmina Cmax) ’

where the boundary values ((pin, (max) must be the same as those that were used to evaluate the
I integrals during the generation of the trial scale above, i.e., they must correspond to the phase-
space overestimate used for the trial generation. The forms of I are given for each evolution
variable separately in eqs. (53)—(60).

For () |, the solutions to eq. (104) are:

(104)

1
1 - Cmin Cmin(l - gmax))R
R)=|1 105
CIE,F( ) + Cmm (Cmax(l _ Cmin) ] ) ( )
1— Zmax ®
G1(R) = Gorc(R) = 1 — (1 o) (?) , (106)
for mp:
C R
(35(R) = Cuin (Qméx) ; (107)
§3F<R) = gmin + R(Cmax - Cmin) 5 (108)
N R
CSI(R) =1- (1 - Cmin) (11_—§-max> ; (109)

12



for E*:

(R = R e aw

(17(R) = Guin + R(Cmax — Cumin) 5 (111)
for my.:

25(R) = Guin + R(Cmax — Gumin) - (112)

The generated value of ( can now be compared to the limits imposed by the physical phase space
at the generated value of () and a rejection imposed if the generated ( value falls outside the
phase space.

A.9 Inverse Transforms

After a set of shower variables has been generated, the Q* and ( choices must be inverted to
reobtain the branching invariants, (s;;, ;). which are used to construct the kinematics of the
trial branching. These inversions are, for () :

Q? G1 C2 (3
I Ay ] . 1@
Y 1—G NJ_m%K (3 NJ_m%K ’ (113)
_1-=G Q1 1 Q7
Yjk = N 2 - 2 C3 ’
G 1MTK G2 NJ_mIK
for mp (on y;; < y; branch):
m3, (3
gy = D (114)
Np
vk = G,
for B*:
E*2 Cl
E*2
vij = Q ma (115)

E'*Q
. = (1—
Yik ( CI)H m%K )

13
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mqq 42
Yij = G2\ (116)
2
y/_ mqq
" mig

B Cutoff Boundaries

B.1 Fixed Transverse Momentum

e Consider the region defined by y;;y;, > v, . For illustration, a value of y; = 0.1 was used
for the contour shown with light green shading in fig. 1.

e The (larger) invariant-mass region that completely encloses the y, one is defined by yp =
min(y;;, y;x) > 5(1 — /T — 4y ). This is shown with light blue shading in fig. 1.

e The (smaller) invariant-mass region that is completely enclosed by the y, one is defined
by yp = min(y;;, yjx) > /yL. This is shown with light yellow shading in fig. 1.

To translate this to evolution variables, with arbitrary normalization factors, use y; = Q2 /sy /Ny
and mQD/S]K/ND.

B.2 Fixed Dipole Mass

e Consider the region defined by min(y;;y;1) > yp, with yp some fixed value.

14



e The (larger) transverse-momentum region that completely encloses the yp one is defined
by y1 = yi;y;r > y5. This relationship is illustrated by the light-green and light-yellow
shaded regions in fig. 1.

e The (smaller) transverse-momentum region that is completely enclosed by the yp one is
defined by vy, = yijy;, > i(l — (1 — 2yp)?). This relationship is illustrated by the
light-green and light-blue shaded regions in fig. 1.

To translate this to evolution variables, with arbitrary normalization factors, use y, = Q2 /srx /N,
and m2D/31K/ND.
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