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A Evolution Equations

A.1 Final–Final Evolution Variables
The evolution variables considered in VINCIA for final–final antennae are the following [1, 2]:

Q2
⊥ = N⊥

sijsjk
m2
IK

= N⊥ yij yjkm
2
IK = N⊥ p

2
⊥A , (1)

m2
D = ND min(sij, sjk) = ND min(yij, yjk)m

2
IK , (2)

E∗2 =
(sij + sjk)

2

m2
IK

= (yij + yjk)
2m2

IK , (3)

m2
g∗ = m2

jk , (4)

with the arbitrary normalization factors N⊥ ∈ [1, 4] and ND ∈ [1, 2], the invariant mass

m2
IK = (pI + pK)2 = (pi + pj + pk)

2 , (5)

and the symbol sij defined as the dot product

sij ≡ 2pi · pj = (pi + pj)
2 −m2

i −m2
j
m=0
= m2

ij . (6)

The maximum values that these evolution variables attain on the physical final-final antenna
phase-space are:

Q2
⊥max =

N⊥
4
m2
IK , (7)

m2
Dmax =

ND

2
m2
IK , (8)

E∗2max = m2
IK , (9)

m2
g∗max = m2

IK . (10)

Note on dimensionality: the dimensionless form of the evolution variable is y = Q2/m2
IK ,

with Q denoting the choice of evolution variable among the above possibilities. Throughout, we
use the notation y for scaled dot products, yij = sij/m

2
IK , and y′ for scaled invariant masses,

y′ij = m2
ij/m

2
IK .

Note for mD: the expressions below correspond to the branch with yij < yjk and hence will
only generate branchings over half of phase space. For trial antenna functions symmetric in the
invariants (specifically the soft-eikonal and hard-finite ones, see sec. A.4), the trial generation is
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done by multiplying the kernel by a factor 2 and randomly keeping or swapping the generated
invariants. For the I- and K-collinear sector terms, we use that they are mutually related by
i ↔ k, and hence an I-collinear term over all of phase space can be composed from an I-
collinear one on the branch yij < yjk combined with a K-collinear one with swapped invariants
on the complementary branch.

A.2 Zeta Definitions
The following choices of ζ are used:

ζ1 =
yij

yij + yjk
(11)

ζ2 = yij (12)

ζ3 = yjk . (13)

The final–final phase-space limits are, for Q⊥:

ζ1±(Q2
⊥) =

1

2

(
1±

√
1− 4

N⊥

Q2
⊥

m2
IK

)
=

1

2

(
1±

√
1− 4 yij yjk

)
, (14)

ζ2±(Q2
⊥) = ζ1±(Q2

⊥) , (15)

ζ3±(Q2
⊥) = ζ1±(Q2

⊥) , (16)
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for mD:

ζ1−(m2
D) =

1

2
, (17)

ζ1+(m2
D) = 1− m2

D

NDm2
IK

= 1− yij , (18)

ζ2−(m2
D) = N/A , (19)

ζ2+(m2
D) = N/A , (20)

ζ3−(m2
D) =

m2
D

NDm2
IK

= yij , (21)

ζ3+(m2
D) = 1− m2

D

NDm2
IK

= 1− yij , (22)

for E∗:

ζ±(E∗2) = Special: see below (23)

for mg∗:

ζ2−(m2
qq̄) = 0 , (24)

ζ2+(m2
qq̄) = 1−

m2
g∗

m2
IK

= 1− y′jk , (25)

using the definition y′jk = m2
jk/m

2
IK in the last expression. Note that the phase-space limits

for E∗ coincide with the collinear limits. Integrations over any finite interval of E∗ over the
full allowed ζ range would therefore yield infinities. When using E∗-ordering, it is necessary to
impose a hadronization cutoff in a complementary variable, such as Q⊥ or mD. This cutoff then
defines the ζ boundaries for the integrations.

A.3 Jacobians
The Jacobians for the transformation from the original LIPS variables, (sij, sjk), to the shower
variables, (Q2, ζ), are written as a product of a normalization-and-Q-dependent piece and a ζ-
dependent factor,

|J | = JQ × Jζ . (26)
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They are, for Q2
⊥:

|J(Q2
⊥, ζ1)| = 1

2N⊥
× m2

IK

ζ1(1− ζ1)
, (27)

|J(Q2
⊥, ζ2)| = 1

N⊥
× m2

IK

ζ2

, (28)

|J(Q2
⊥, ζ3)| = 1

N⊥
× m2

IK

ζ3

, (29)

for m2
D:

|J(m2
D, ζ1)| = Not Used , (30)

|J(m2
D, ζ2)| = N/A , (31)

|J(m2
D, ζ3)| = 1

ND

×m2
IK , (32)

for E∗2:

|J(E∗2, ζ1)| = 1

2
×m2

IK , (33)

|J(E∗2, ζ2)| = mIK

2
√
E∗2
×m2

IK , (34)

|J(E∗2, ζ3)| = mIK

2
√
E∗2
×m2

IK , (35)

for mg∗:

|J(m2
qq̄, ζ2)| = 1×m2

IK . (36)
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A.4 Trial Functions
The following trial functions are available:

Eikonal (soft) : âE =
1

m2
IK

2

yijyjk
(37)

Constant (hard) : âF =
1

m2
IK

(38)

I Collinear (sector) : âI =
1

m2
IK

2

yij(1− yjk)
(39)

K Collinear (sector) : âK =
1

m2
IK

2

yjk(1− yij)
(40)

K Splitting (g → qq̄) : âS =
1

m2
qq̄

=
1

m2
IK

1

y′jk
, (41)

where we emphasize that y′jk in the last expression is defined by y′jk = m2
jk/m

2
IK .

A.5 Zeta Integrals
For a given trial antenna function, â, the definition of the ζ integral is:

Iζ =

∫ ζb

ζa

dζ Jζ â (42)

where |Jζ | signifies the part of the Jacobian that only has ζ dependence (see above), and ζb > ζa
represents an arbitrary ζ interval. This interval will in general be larger than the physically
allowed one (trials generated outside the physical phase space will be rejected by a veto). We
shall nevertheless still assume that all ζ values are at least inside the range ζ ∈ [0, 1].

The integration kernels are, for Q⊥:

Jζ âE,F (Q2
⊥, ζ1) =

1

(1− ζ1)ζ1

, (43)

Jζ âI(Q
2
⊥, ζ3) =

1

(1− ζ3)
, (44)

Jζ âK(Q2
⊥, ζ2) =

1

(1− ζ2)
, (45)
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for mD:

Jζ âE(m2
D, ζ3) =

1

ζ3

, (46)

Jζ âF (m2
D, ζ3) = 1 , (47)

Jζ âI(m
2
D, ζ3) =

1

(1− ζ3)
, (48)

for E∗:

Jζ âE(E∗2, ζ1) =
1

ζ2
1

, (49)

Jζ âF (E∗2, ζ1) =
1

2
, (50)

(51)

for mg∗:

Jζ âS(m2
g∗ , ζ2) = 1 (52)

with integrals over the range ζa < ζb, for Q⊥:

IζE,F (Q2
⊥, ζ1) = ln

(
ζb(1− ζa)
ζa(1− ζb)

)
, (53)

IζI(Q
2
⊥, ζ3) = ln

(
1− ζa
1− ζb

)
, (54)

IζK(Q2
⊥, ζ2) = ln

(
1− ζa
1− ζb

)
, (55)

for mD:

IζE(m2
D, ζ3) = ln

(
ζb
ζa

)
, (56)

IζF (m2
D, ζ3) = ζb − ζa , (57)

IζI(m
2
D, ζ3) = ln

(
1− ζa
1− ζb

)
, (58)

for E∗:

IζE(E∗2, ζ1) =
1

za
− 1

zb
, (59)

IζF (E∗2, ζ1) = ζb − ζa , (60)
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for mg∗:

IζS(m2
g∗ , ζ2) = ζb − ζa . (61)

A.6 Evolution Integrals
The evolution integral, for a particular choice of Q and ζ , is defined as follows

Â(Q2
1, Q

2
2) =

∫ Q2
1

Q2
2

dQ2 C g2
s

16π2m2
IK

JQ(Q, ζ) Iζ(Q, ζ) , (62)

with C the (trial) color factor (typically CA for gluon emission and 1 for gluon splitting) and JQ
the non-ζ dependent part of the Jacobian, see eqs. (27) – (36).

Note: for massive partons, the phase-space factor should actually be larger: mIK in the
denominator should be replaced by the Källén function, see [3]. This is taken care of during trial
generation by applying an overall prefactor representing the phase-space volume and using the
same integrals as shown here below.

We label the integrand in the above equation by

dÂ =
C g2

s

16π2s
JQ(Q, ζ) Iζ(Q, ζ) , (63)

which takes the following specific forms, for Q⊥:

dÂE(Q2
⊥) =

α̂s
4π
C IζE(Q2

⊥, ζ1)
1

Q2
⊥
, (64)

dÂF (Q2
⊥) =

1

2N⊥

α̂s
4π
C IζF (Q2

⊥, ζ1)
1

m2
IK

, (65)

dÂI(Q2
⊥) = 2

α̂s
4π
C IζI(Q2

⊥, ζ3)
1

Q2
⊥
, (66)

dÂK(Q2
⊥) = 2

α̂s
4π
C IζK(Q2

⊥, ζ2)
1

Q2
⊥
, (67)

for mD:

dÂE,I(m2
D) =

α̂s
4π
C 2IζE,I(m

2
D, ζ3)

1

m2
D

, (68)

dÂF (m2
D) =

1

ND

α̂s
4π
C IζF (m2

D, ζ3)
1

m2
IK

, (69)

8



for E∗:

dÂE(E∗2) =
α̂s
4π
C IζE(E∗2, ζ1)

1√
E∗2m2

IK

, (70)

dÂF (E∗2) =
α̂s
4π
C 1

2
IζF (E∗2, ζ1)

1

m2
IK

, (71)

for mg∗:

dÂS(m2
g∗) =

α̂s
4π
C IζS(m2

g∗ , ζ2)
1

m2
g∗
. (72)

For a constant trial α̂s, the evolution integrals are, for Q⊥:

Â0
E(Q2

⊥1, Q
2
⊥2) =

α̂s
4π
C IζE ln

(
Q2
⊥1

Q2
⊥2

)
, (73)

Â0
F (Q2

⊥1, Q
2
⊥2) =

1

2N⊥

α̂s
4π
C IζF

(Q2
⊥1 −Q2

⊥2)

m2
IK

, (74)

Â0
I,K(Q2

⊥1, Q
2
⊥2) = 2

α̂s
4π
C IζI,K ln

(
Q2
⊥1

Q2
⊥2

)
, (75)

for mD:

Â0
E,I(m

2
D1,m

2
D2) =

α̂s
4π
C 2IζE,I ln

(
m2
D1

m2
D2

)
, (76)

Â0
F (m2

D1,m
2
D2) =

1

ND

α̂s
4π
C IζF

(m2
D1 −m2

D2)

m2
IK

, (77)

for E∗:

Â0
E(E∗21 , E

∗2
2 ) =

α̂s
4π
C 2IζE

(√
E∗21 −

√
E∗22

)
mIK

, (78)

Â0
F (E∗21 , E

∗2
2 ) =

α̂s
4π
C 1

2
IζF

(E∗21 − E∗22 )

m2
IK

(79)

for mg∗:

Â0
S(m2

g1,m
2
g2) =

α̂s
4π
C IζS ln

(
m2
g1

m2
g2

)
. (80)
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For a first-order running trial α̂s(Q2),

α̂s(Q
2
⊥) =

1

b0 ln
(
k2Rp

2
⊥A

Λ2

) =
1

b0 ln
(
k2RQ

2
⊥

N⊥Λ2

) , (81)

α̂s(m
2
D) =

1

b0 ln
(
k2Rm

2
min

Λ2

) =
1

b0 ln
(
k2Rm

2
D

NDΛ2

) , (82)

α̂s(m
2
g∗) =

1

b0 ln
(
k2Rm

2
g∗

Λ2

) , (83)

with kR an arbitrary scaling factor that includes the compound effect of any renormalization-
scale prefactor choices and the optional translation between the MSbar and CMW schemes for
Λ, the evolution integrals are, for Q⊥:

Â1
E(Q2

⊥1, Q
2
⊥2) =

CIζE
4πb0

ln

 ln
(
k2RQ

2
⊥1

N⊥Λ2

)
ln
(
k2RQ

2
⊥2

N⊥Λ2

)
 , (84)

Â1
F (Q2

⊥1, Q
2
⊥2) = Not Used (generates LogIntegrals) , (85)

Â1
I,K(Q2

⊥1, Q
2
⊥2) = 2

CIζI,K
4πb0

ln

 ln
(
k2RQ

2
⊥1

N⊥Λ2

)
ln
(
k2RQ

2
⊥2

N⊥Λ2

)
 , (86)

for mD:

Â1
E,I(m

2
D1,m

2
D2) = 2

CIζE,I
4πb0

ln

 ln
(
k2Rm

2
D1

NDΛ2

)
ln
(
k2Rm

2
D2

NDΛ2

)
 , (87)

Â1
F (m2

D1,m
2
D2) = Not Used (generates LogIntegrals) , (88)

for m∗g:

Â1
S(m2

g1,m
2
g2) =

CIζS
4πb0

ln

 ln
(
k2Rm

2
g1

Λ2

)
ln
(
k2Rm

2
g2

Λ2

)
 . (89)

A.7 Generation of Trial Evolution Scale
The trial Sudakov factor is defined as:

∆̂(Q2
1, Q

2
2) = exp

[
−Â(Q2

1, Q
2
2)
]
, (90)
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and the next trial scale is found by solving the equation:

R = ∆̂(Q2, Q2
new) , (91)

for Qnew, with R a random number distributed uniformly in the interval R ∈ [0, 1], and Q the
current “restart scale”. For strongly ordered showers, the restart scale after an accepted trial
branching is the evolution scale evaluated on the current parton configuration. For smoothly
ordered showers, this restart scale is only used for antennae that are not color-adjacent to the
branching that occurred; for the newly created antennae, and (optionally) for any color-adjacent
ones, the restart scale is the respective antenna invariant masses1.

For both strongly and smoothly ordered showers, the restart scale after a failed (vetoed) trial
branching is the scale of the failed branching.

Note: to optimize event generation, trial scales can be saved and reused for any antennae
whose flavors, spins, and invariant masses are preserved by the preceding branching step.

For constant trial α̂s, the solutions for the next trial scale are, for Q⊥:

Q2
⊥Enew = Q2

⊥R
4π
α̂s

1
CIζE , (92)

Q2
⊥Fnew = Q2

⊥ −m2
IK 2N⊥

4π

α̂s

1

CIζF
ln(1/R) , (93)

Q2
⊥I,Knew = Q2

⊥R
1
2

4π
α̂s

1
CIζI,K , (94)

for mD:

m2
DE,Inew = m2

DR
4π
α̂s

1
2CIζE,I , (95)

m2
DFnew = m2

D −m2
IK ND

4π

α̂s

1

CIζF
ln(1/R) , (96)

for E∗:

E∗2Enew =

(√
E∗2 −mIK

4π

α̂s

1

CIζE
ln(1/R)

)2

, (97)

E∗2Fnew = E∗2 −m2
IK

4π

α̂s

1

2CIζF
ln(1/R) , (98)

for mD:

m2
g∗Snew = m2

g∗R
4π
α̂s

1
CIζS . (99)

1This allows hard 2 → n branchings to be generated inside the newly created antennae (and optionally within
the color-adjacent ones) without disturbing the evolution of the rest of the event.

11



For a one-loop running trial α̂s(µ2
R), with µ2

R ∝ Q2, the solutions for the next trial scale are,
for Q⊥:

ln

(
k2
RQ

2
⊥Enew

N⊥Λ2

)
= R

4πb0
CIζE ln

(
k2
RQ

2
⊥

N⊥Λ2

)
, (100)

ln

(
k2
RQ

2
⊥I,Knew

N⊥Λ2

)
= R

1
2

4πb0
CIζE ln

(
k2
RQ

2
⊥

N⊥Λ2

)
, (101)

for mD:

ln

(
k2
Rm

2
DE,Inew

NDΛ2

)
= R

4πb0
2CIζE,I ln

(
k2
Rm

2
D

NDΛ2

)
, (102)

for mg∗:

ln

(
k2
Rm

2
g∗Snew

Λ2

)
= R

4πb0
CIζS ln

(
k2
Rm

2
g∗

Λ2

)
. (103)

A.8 Generation of Trial Zeta
The trial value for ζ is found by inverting the equation

Rζ =
Iζ(ζmin, ζ)

Iζ(ζmin, ζmax)
, (104)

where the boundary values (ζmin, ζmax) must be the same as those that were used to evaluate the
Iζ integrals during the generation of the trial scale above, i.e., they must correspond to the phase-
space overestimate used for the trial generation. The forms of Iζ are given for each evolution
variable separately in eqs. (53)–(60).

For Q⊥, the solutions to eq. (104) are:

ζ1E,F (R) =

[
1 +

1− ζmin

ζmin

(
ζmin(1− ζmax)

ζmax(1− ζmin)

)R]−1

, (105)

ζ3I(R) = ζ2K(R) = 1− (1− ζmin)

(
1− zmax

1− zmin

)R
, (106)

for mD:

ζ3E(R) = ζmin

(
ζmax

ζmin

)R
, (107)

ζ3F (R) = ζmin +R(ζmax − ζmin) , (108)

ζ3I(R) = 1− (1− ζmin)

(
1− ζmax

1− ζmin

)R
, (109)
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for E∗:

ζ1E(R) =
ζmaxζmin

ζmax −R(ζmax − ζmin)
, (110)

ζ1F (R) = ζmin +R(ζmax − ζmin) , (111)

for mg∗:

ζ2S(R) = ζmin +R(ζmax − ζmin) . (112)

The generated value of ζ can now be compared to the limits imposed by the physical phase space
at the generated value of Q and a rejection imposed if the generated ζ value falls outside the
phase space.

A.9 Inverse Transforms
After a set of shower variables has been generated, the Q2 and ζ choices must be inverted to
reobtain the branching invariants, (sij, sjk), which are used to construct the kinematics of the
trial branching. These inversions are, for Q⊥:

Q2
⊥ ζ1 ζ2 ζ3

yij =

√
ζ1

1− ζ1

√
Q2
⊥

N⊥m2
IK

ζ2
1

ζ3

Q2
⊥

N⊥m2
IK

,

yjk =

√
1− ζ1

ζ1

√
Q2
⊥

N⊥m2
IK

1

ζ2

Q2
⊥

N⊥m2
IK

ζ3 ,

(113)

for mD (on yij < yjk branch):
m2

D ζ3

yij =
m2
D

ND

,

yjk = ζ3 ,

(114)

for E∗:
E∗2 ζ1

yij = ζ1

√
E∗2

m2
IK

,

yjk = (1− ζ1)

√
E∗2

m2
IK

,

(115)
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Figure 1: Illustration of the intersection/nesting of pT and mD contours.

for m2
qq̄:

m2
qq̄ ζ2

yij = ζ2 ,

y′jk =
m2
qq̄

m2
IK

,

(116)

B Cutoff Boundaries

B.1 Fixed Transverse Momentum
• Consider the region defined by yijyjk ≥ y⊥. For illustration, a value of y⊥ = 0.1 was used

for the contour shown with light green shading in fig. 1.

• The (larger) invariant-mass region that completely encloses the y⊥ one is defined by yD =
min(yij, yjk) ≥ 1

2
(1−

√
1− 4y⊥). This is shown with light blue shading in fig. 1.

• The (smaller) invariant-mass region that is completely enclosed by the y⊥ one is defined
by yD = min(yij, yjk) ≥

√
y⊥. This is shown with light yellow shading in fig. 1.

To translate this to evolution variables, with arbitrary normalization factors, use y⊥ = Q2
⊥/sIK/N⊥

and m2
D/sIK/ND.

B.2 Fixed Dipole Mass
• Consider the region defined by min(yijyjk) ≥ yD, with yD some fixed value.
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• The (larger) transverse-momentum region that completely encloses the yD one is defined
by y⊥ = yijyjk ≥ y2

D. This relationship is illustrated by the light-green and light-yellow
shaded regions in fig. 1.

• The (smaller) transverse-momentum region that is completely enclosed by the yD one is
defined by y⊥ = yijyjk ≥ 1

4
(1 − (1 − 2yD)2). This relationship is illustrated by the

light-green and light-blue shaded regions in fig. 1.

To translate this to evolution variables, with arbitrary normalization factors, use y⊥ = Q2
⊥/sIK/N⊥

and m2
D/sIK/ND.
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