While the CM momenta of a 2→3 branching are fixed by the generated invariants (and hence by the antenna function), the global orientation of the produced 3-parton system with respect to the rest of the event (or, equivalently, with respect to the original dipole-antenna axis) suffers from an ambiguity outside the LL limits, which can affect the tower of subleading logs generated and can be significant in regions where the leading logs are suppressed or absent.
To illustrate this ambiguity, consider the emissision of a gluon from a qqbar antenna with some finite amount of transverse momentum (meaning transverse to the original dipole-antenna axis, in the CM of the dipole-antenna). The transverse momenta of the qqbar pair after the branching must now add up to an equal, opposite amount, so that total momentum is conserved, i.e., the emission generates a recoil. By an overall rotation of the post-branching 3-parton system, it is possible to align either the q or the qbar with the original axis, such that it becomes the other one that absorbs the entire recoil (the default in showers based on 1→2 branchings such as old-fashioned parton showers and Catani-Seymour showers), or to align both of them slightly off-axis, so that they share the recoil (the default in VINCIA, see illustration below).
Vincia:kineMapType
.
mode
Vincia:kineMapType
(default = 3
; minimum = 1
; maximum = 3
)option
1 : The ARIADNE angle (see illustration).
The recoiling mothers share the recoil in
proportion to their energy fractions in the CM of the
dipole-antenna. Tree-level expansions of the VINCIA shower compared
to tree-level matrix elements through third order in alphaS have
shown this strategy to give the best overall approximation,
followed closely by the KOSOWER map below.
option
2 : LONGITUDINAL. The parton which has the
smallest invariant
mass together with the radiated parton is taken to be the "radiator". The
remaining parton is taken to be the "recoiler". The recoiler remains oriented
along the dipole axis in the branching rest frame and recoils
longitudinally against the radiator + radiated partons which have
equal and opposite transverse momenta (transverse to the original
dipole-antenna axis in the dipole-antenna CM). Comparisons to
higher-order QCD matrix elements show this to be by far the worst
option of the ones so far implemented, hence it could be
useful as an extreme case for uncertainty estimates, but should
probably not be considered for central tunes. (Note: exploratory attempts at
improving the behaviour of this map, e.g., by selecting
probabilistically between the radiator and the recoiler according to
approximate collinear splitting kernels, only resulted in
marginal improvements. Since such variations would introduce
additional complications in the VINCIA matching formalism, they
have not been retained in the distributed version.)
option
3 : The KOSOWER map. Comparisons to higher-order QCD
matrix elements show only very small differences between this and
the ARIADNE map above, but since the KOSOWER map is sometimes used in
fixed-order contexts, we deem it interesting to include it as a
complementary possibility. (Note: the KOSOWER maps in fact represent a
whole family of kinematics maps. For experts, the specific choice
made here corresponds to using r=sij/(sij+sjk) in the
definition of the map.)